Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64120
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖運炫
dc.contributor.authorTsung-Hsien Lien
dc.contributor.author李宗憲zh_TW
dc.date.accessioned2021-06-16T17:30:52Z-
dc.date.available2012-08-20
dc.date.copyright2012-08-20
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citation[1] J. Chae, S.S. Park, T. Freiheit,“Investigation of micro-cutting operations,” International Journal of Machine Tools and Manufacture, Vol. 46, pp. 313-332, 2006.
[2] M. Tanaka,“Development of desktop machining microfactory,”Riken Review, Vol. 34, pp. 46-49, 2001.
[3] I. Kang, J. Kim, J. Kim, M. Kang and Y. Seo, 'A mechanistic model of cutting force in the micro end milling process,' Journal of Materials Processing Technology, Vol. 187-188, pp.250-255, 2007.
[4] X. Liu, R.E. Devor, S.G. Kapoor,“An Analytical Model for the Prediction of Minimum Chip Thickness in Micromachining,”Journal of Manufacturing Science and Engineering, Vol. 128 , pp. 474-481, 2006.
[5] I.N. Tansel, T.T. Arkan, W.Y. Bao, N. Mahendrakar, B. Shisler, D. Smith, M. McCool,“Tool wear estimation in micro-machining. Part 1,” International Journal of Machine Tools and Manufacture, Vol. 40, pp. 599-608, 2000.
[6] G. Schueler, J. Engmann, T. Marx, R. Haberland, J. Aurich, J.C. Aurich, D. Dornfeld,“Burr Formation and Surface Characteristics in Micro-End Milling of Titanium Alloys,”Burrs - Analysis, Control and Removal, Springer – Verlag Berlin Heidelberg, pp. 129-138, 2010.
[7] S. Kalpakjian, S.R. schmid, Manufacturing Processes for Engineering Materials, New Jersey : Prentice-Hall, 2002.
[8] S.Y. Hong, I. Markus, W. Jeong, 'New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V,' International Journal of Machine Tools and Manufacture, Vol. 41, pp. 2245-2260, 2001.
[9] Y. Yildiz, M. Nalbant, 'A review of cryogenic cooling in machining processes,' International Journal of Machine Tools and Manufacture, Vol. 48, pp. 947-964, 2008.
[10] X.Lai, H. Li, C. Li, Z. Lin, J. Ni,“Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness,” International Journal of Machine Tools and Manufacture, Vol. 48, pp. 1-14, 2008.
[11] S. Son, H. Lim, J. Ahn,“The effect of vibration cutting on minimum cutting thickness,” International Journal of Machine Tools and Manufacture, Vol. 46, pp. 2066-2072, 2006.
[12] X. Liu, R.E. DeVor, S.G. Kapoor, K.F. Ehmann,“The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science,”Journal of Manufacturing Science and Engineering, Vol. 126, pp. 666-678, 2004.
[13] S. Filiz, C.M. Conley, M.B. Wasserman, O.B. Ozdoganlar,“An experimental investigation of micro-machinability of copper 101 using tungsten carbide micro-endmills,” International Journal of Machine Tools and Manufacture, Vol. 47, pp. 1088-1100, 2007.
[14] K. Lee, D.A. Dornfeld, 'An experimental study on burr formation in micro milling aluminum an copper,' Transactions of the NAMRI/SME, Vol. 30, pp. 1-8, 2002.
[15] K. Lee, D.A. Dornfeld, “Micro-burr formation and minimization through process control,” Precision Engineering, Vol. 29, pp. 246-252, 2005.
[16] Y.S. Liao, C.L. Huang,“The Relationship of Cutting Speed and Roughness of the Machined Surface in Micro Milling,”Proceedings of the 6th International Conference on Micromanufactuaring, Japan, pp. 503-507, 2011.
[17] Z.Y. Wang, K.P. Rajurkar,“Cryogenic machining of hard-to-cut materials,” Wear, Vol. 239, pp. 168-175, 2000.
[18] N.R. Dhar, S. Paul, A.B. Chattopadhyay,“Role of cryogenic cooling on cutting temperature in turning steel,” Transactions of the ASME, Vol. 124, pp. 146–154, 2002.
[19] S.W. Kim, D.W. Lee, M.C. Kang, J.S. Kim,“Evaluation of machinability by cutting environments in high-speed milling of difficult-to-cut materials,” Journal of Materials Processing Technology, Vol. 111, pp. 256-260, 2001.
[20] S.Y. Hong, Y. Ding, 'Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V,' International Journal of Machine Tools and Manufacture, Vol. 41, pp. 1417-1437, 2001.
[21] A.K. Nandy, M.C. Gowrishankar, S. Paul,“Some studies on high-pressure cooling in turning of Ti-6Al-4V,” International Journal of Machine Tools and Manufacture, Vol. 49, pp. 182-198, 2009.
[22] J.G. Lopez, J. Peirs, P. Verleysen, J. Degrieck, 'Effect of small temperature variations on the tensile behaviour of Ti-6Al-4V,' Procedia Engineering, Vol. 10, pp. 2330-2335, 2011.
[23] S. Kalpakjian, Manufacturing Engineering and Technology, 2nd ed., Addison-Wesley, Reading, MA, 1991.
[24] 范光照、張郭益, 精密量測, 高立圖書有限公司, 民國90年, pp. 第241-268頁.
[25] 陳順同, 微CNC綜合加工機研發與微元件製造研究, 國立台灣大學機械工程學研究所博士論文, 民國九十四年七月.
[26] Y.H. Kim, S.L. Ko, “Development of design and manufacturing technology for end mills in machining hardened steel,” Journal of Materials Processing Technology, Vol. 130-131, pp. 653-661, 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64120-
dc.description.abstract本論文針對微銑削時的表面黏屑、刀具磨耗和毛邊等問題,提出了以液態二氧化碳來輔助微銑削Ti-6Al-4V,並將結果與乾切削、高壓空氣輔助、最少量潤滑和濕切削的加工結果比較。
在乾切削環境下,使用刀徑0.5 mm銑削時,表面粗糙度會隨著切削速度的增加而減低,符合一般的切削趨勢;但在使用刀徑0.3 mm乾銑削時,在切削速度高於40 m/min時會有切屑黏附於加工表面,使得表面粗糙度變差,推測這是因為切屑細小且破碎,加上切削時的高溫使之黏附於表面上。使用液態二氧化碳輔助銑削因為能有效降低切削溫度,故能改善表面黏屑的情形,於切削速度70 m/min時,能將乾切削的Ra 值從0.09 μm減至0.04 μm;進給4 μm/tooth,切深20 μm,切削長度1200 mm之後並沒有刀腹磨耗,但乾切削在同樣實驗參數下卻有70 μm的刀腹磨耗;因為低溫降低材料延性,毛邊發生的現象也獲得改善,毛邊高度比乾切削時少了77 %。此外,為了增進以液態二氧化碳輔助加工的潤滑效果,本文提出以液態二氧化碳輔以最少量潤滑來銑削Ti-6Al-4V,實驗結果顯示切削速度70 m/min時,切削力較單純使用液態二氧化碳輔助低了12 %,且沒有發現表面黏屑的情形,顯示此策略既保有低溫冷卻的效果,也可增進潤滑能力,表面粗糙度從0.04 μm降至0.034 μm,改善了15 %,毛邊高度從32 μm減至16 μm,減低了50 %。
zh_TW
dc.description.abstractThe use of liquid carbon dioxide to assist cutting so as to improve the encountered difficulties in micro end milling Ti-6Al-4V titanium alloy was proposed in this study. To confirm the effects of the proposed approach, experimental results were compared with those under dry cutting, high pressure air jet, minimum quantity lubrication (MQL), and wet conditions.
It was found that the machined roughness decreased with the cutting speed as observed in the conventional cutting when a larger diameter end milling cutter (D = 0.5 mm) was used. On the contrary, the chips produced were tiny and broken when a smaller diameter cutter (D = 0.3 mm) was used. Under high cutting speed condition these chips could adhere on the machined surface and led to an increase of surface roughness.The application of liquid carbon dioxide assisted micro milling can effectively decrease cutting temperature, which in turn reduce the amount of chips adhering on the machined surface and lower the tool flank wear. The surface roughness Ra at a cutting speed of 70 m/min was improved from 0.09 μm under dry cutting to 0.04 μm under the proposed liquid carbon dioxide assisted cutting. And there were no flank wear at feed of 4 μm/tooth, depth of cut 20 μm and cutting length of 1200 mm. In addition, there were very few burrs left on the machined surface. The height of the burr was only 23% of that under dry cutting.
In the end, the use of liquid carbon dioxide and MQL to assist cutting to improve the lubrication in the use of liquid carbon dioxide. The experimental results show that this method provided the lowest cutting force, burr height and surface roughness among all the cooling/lubrication conditions employed. And there were no chips adhere on the machined surface.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:30:52Z (GMT). No. of bitstreams: 1
ntu-101-R99522715-1.pdf: 8778524 bytes, checksum: e3390bb7f04f585f82e6f9c62d670ba0 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 IX
表目錄 XIII
符號表 XV
第一章 緒論 1
1-1研究背景與動機 1
1-2文獻回顧 4
1-2-1微銑削加工技術 4
1-2-2鈦合金的加工技術 7
1-2-3 溫度對鈦合金材料性質的影響 8
1-3研究目的 9
1-4本文結構 10
第二章 相關理論 11
2-1銑削理論 11
2-2磨耗理論 12
2-3表面粗糙度 16
第三章 實驗設備與方法 19
3-1實驗方法 19
3-2實驗設備 23
3-3實驗銑削條件之計算 34
第四章 實驗結果與討論 35
4-1於乾切削環境下銑削Ti-6Al-4V之結果與探討 35
4-2於不同切削環境下銑削Ti-6Al-4V之結果與探討 50
4-2-1表面粗糙度 50
4-2-2刀具 54
4-2-3毛邊 58
4-3液態二氧化碳輔以最少量潤滑銑削Ti-6Al-4V之結果與探討 62
4-3-1表面粗糙度 62
4-3-2刀具 64
4-3-3毛邊 66
第五章 結論 69
5-1結論 69
5-2未來展望 70
參考文獻 71
dc.language.isozh-TW
dc.title低溫冷卻用於Ti-6Al-4V微銑削之研究zh_TW
dc.titleInvestigations on cryogenic cooling in the micro millingen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡曜陽,李貫銘
dc.subject.keyword微銑削,鈦合金,液態二氧化碳,最少量潤滑,高壓空氣,zh_TW
dc.subject.keywordmicro milling,titanium alloy,liquid carbon dioxide,MQL,high pressure jet,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
8.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved