請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64110完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林清富 | |
| dc.contributor.author | Jen-Yu Sun | en |
| dc.contributor.author | 孫任余 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:30:27Z | - |
| dc.date.available | 2017-08-28 | |
| dc.date.copyright | 2012-08-28 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | Chapter 1
[1] Web of U.S. Energy Information Administration, EIA, ”http://www.eia.gov/” [2] 台灣因應氣候變化綱要公約資訊網, ”http://www.tri.org.tw/unfccc/” [3] E. Becquerel. Compt. Rend. 9(1839) 58. 561. 711. [4] 蔡孟諺,有機薄膜太陽能電池簡介,儀科中心簡訊第95期,12-13頁。 [5] Angus Rockett, Yip-Wah Chung, Hans Blaschek, Sandy Butterfield, Ronald R. Chance, Chris Ferekides, Michael Robinson, Seth W. Snyder, Michael Thackeray, Transformative research issues and opportunities in alternative energy generation and storage, Curr Opin Solid State Mater Sci. 15 (2011) 8–15. [6] G. Conibeer, Third-generation photovoltaics, Materials Today 10, 2007, 42-50. [7] W. Shockley and J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys., vol. 32, pp. 510-519 , 1961. [8] F.C. Krebs, Fabrication and processing of polymer solar cells: A review of printing and coating techniques, Sol. Energy Mater. Sol. Cells 93 (2009) 394-412. [9] B. C. Thompson and J. M. J. Frechet, Polymer–Fullerene Composite Solar Cells, Angew. Chem. Int. Ed. 47 (2008) 58–77. [10] C.J. Brabec, Organic photovoltaics: technology and market, Sol. Energy Mater. Sol. Cells 83 (2004) 273-292. [11] “Best Research-Cell Efficiencies”, National Renewable Energy Laboratory (NREL). [12] 吳春桂,奈米材料:導電高分子之奈米結構,國立中央大學化學系。 [13] 林冠銘、梁蘭昌,《科學發展》2006年7月,403期,52 ~ 57頁。 [14] 陳永隆譯,2000年諾貝爾化學獎介紹。 [15] H. Shirakawa, E. J Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, Synthesis of Electrically Conducting Organic Polymers - Halogen Derivatives of Polyacetylene, (CH)X, J. Chem. Soc. Chem. Commun. 16 (1977) 578–580. [16] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene, Science 258 (1992) 1474–1476. [17] N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, Semiconducting polymer‐buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells, Appl. Phys. Lett. 62 (1993) 585–587. [18] G. Yu, J. Gao, J.Hummelen, F. Wudl, A. J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunction, Science 270 (1995) 1789–1991. [19] 陳文豪,化學 第六十七卷第一期 61-66頁。 [20] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, 2.5% efficient organic plastic solar cells, Appl. Phys. Lett. 78 (2001) 841–843. [21] F. Padinger, R. S. Rittberger, N. S. Sariciftci, Effects of Postproduction Treatment on Plastic Solar Cells, Adv. Funct. Mater. 13 (2003) 85–88. [22] G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nat. Mater. 4 (2005) 864–868. [23] L. J. A. Koster, V. D. Mihailetchi and P. W. M. Blom, Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells, Appl, Phys. Lett. 88 (2006) 093511–1–3. [24] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency, Adv. Mater 18 (2006) 789–794. [25] H.Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat. Photonics 3 (2009) 649–653. [26] Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray and L. Yu, For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%, Adv. Mater. 22 (2010) E135–E138. [27] T.-Y. Chu, S. Alem, S.-W. Tsang, S.-C. Tse, S. Wakim, J. Lu, G. Dennler, D. Waller, R. Gaudiana and Y. Tao, Morphology control in polycarbazole based bulk heterojunction solar cells and its impact on device performance, Appl. Phys. Lett. 98 (2011) 253301–1–3. [28] T.-Y. Chu, J. Lu, S. Beaupre, Y. Zhang, J.-R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding and Y. Tao, Bulk Heterojunction Solar Cells Using Thieno[3,4-c]pyrrole-4,6-dione and Dithieno[3,2-b:20,30-d]silole Copolymer with a Power Conversion Efficiency of 7.3%, J. Am. Chem. Soc. 133 (2011) 4250–4253. [29] Badrou Reda Aich, Jianping Lu, Serge Beaupre, Mario Leclerc and Ye Tao, Control of the active layer nanomorphology by using co-additives towards high-performance bulk heterojunction solar cells, Organic Electronics 13 (2012) 1736–1741. [30] L. Dou, J. You1, J. Yang, C.-C. Chen, Y. He1, S. Murase, T. Moriarty, K. Emery, G. Li and Y. Yang, Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer, Nat. Photonics 6 (2012) 180–185. [31] X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You and Y. Yang, Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells, Adv. Mater. 24 (2012) 3046–3052. Chapter 2 [1] H. Shirakawa, E. J Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, Synthesis of Electrically Conducting Organic Polymers - Halogen Derivatives of Polyacetylene, (CH)X, J. Chem. Soc. Chem. Commun. 16 (1977) 578–580. [2] L. B. Coleman, M. J. Cohen, D. J. Sandman, F. G. Yamagishi, A.F. Garito and A. J. Heeger, Superconducting Fluctuations And The Peierls Instability In An Organic Solid, Solid state Commun. 12 (1973) 1125–1132. [3] 郭宗枋,有機光電高分子學,國立成功大學光電科學與工程學系。 [4] L. Zuppiroli, M. N. Bussac, S. Paschen, O. Chauvet and L. Forro, Hopping in disordered conducting polymers, Phys. Rev. B 50 (1994) 5196–5203. [5] Brian A. Gregg, The Photoconversion Mechanism of Excitonic Solar Cells, MRS Bulletin 30 (2005) 20–22. [6] Stephen R. Forrest, The Limits to Organic Photovoltaic Cell Efficiency, MRS Bulletin 30 (2005) 28–32. [7] Andre’ Moliton and Jean-Michel Nunzi, How to model the behaviour of organic photovoltaic cells, Polym Int 55 (2006) 583–600. [8] J. J. Dittmer, E. A. Marseglia and R. H. Friend, Electron Trapping in Dye/Polymer Blend Photovoltaic Cells, Adv. Mater. 17 (2000) 1270-1274. [9] C.M. Ramsdale, I.C. Bache, J.D. MacKenzie, D.S. Thomas, A.C. Arias, A.M. Donald, R.H. Friend and N.C. Greenham, ESEM imaging of polyfluorene blend cross-sections for organic devices, Physica E 14 (2002) 268-271. [10] L. J. A. Koster, V. D. Mihailetchi and P. W. M. Blom, Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells, Appl, Phys. Lett. 88 (2006) 093511–1–3. [11] K. M. Coakley and M. D. McGehee, Conjugated Polymer Photovoltaic Cells, Chem. Mater. 16 (2004) 4533-4542. [12] C. W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48 (1986) 183-185. [13] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Polymer Photovoltaic Cells - Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions, Science 270 (1995) 1789-1791. [14] G. Yu, A. J. Heeger, Charge Separation and Photovoltaic Conversion in Polymer Composites with Internal Donor-Acceptor Heterojunctions, J. Appl. Phys. 78 (1995) 4510-4515. [15] F. Padinger, R. S. Rittberger, N. S. Sariciftci, Effects of Postproduction Treatment on Plastic Solar Cells, Adv. Funct. Mater. 13 (2003) 85-88. [16] X. N. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen, Nanoscale morphology of high-performance polymer solar cells, Nano Lett. 5 (2005) 579-583. [17] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, A. J. Heeger, New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer, Adv. Mater. 18 (2006) 572. [18] G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nat. Mater. 4 (2005) 864-868. [19] Z. Xu, L. M. Chen, G. W. Yang, C. H. Huang, J. H. Hou, Y. Wu, G. Li, C. S. Hsu, Y. Yang, Vertical Phase Separation in Poly(3-hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells, Adv. Funct. Mater. 19 (2009) 1227-1234. [20] M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, J. Nelson, Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends, Nat. Mater. 7 (2008) 158-164. [21] M. Jorgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells, Sol. Energy Mater. Sol. Cells 92 (2008) 686–714. [22] E. Voroshazi, B. Verreet, T. Aernouts, P. Heremans, Long-term operational lifetime and degradation analysis of P3HT:PCBM photovoltaic cells, Sol. Energy Mater. Sol. Cells 95 (2011) 1303–1307. [23] M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, J. Luther,'Organic solar cells using inverted layer sequence, Thin Solid Films 491 (2005) 298-300. [24] Y. e. Sahin, S. Alem, R. de Bettignies, J.-M. Nunzi, 'Development of air stable polymer solar cells using an inverted gold on top anode structure', Thin Solid Films 476, 2005, 340-343. [25] A. Watanabe, A. Kasuya, 'Effect of atmospheres on the open-circuit photovoltage of nanoporous TiO2/poly(3-hexylthiophene) heterojunction solar cell', Thin Solid Films 483, 2005, 358-366. [26] C. S. Kim, S. S. Lee, E. D. Gomez, J. B. Kim and Y.-L. Loo, Transient photovoltaic behavior of air-stable, inverted organic solar cells with solution-processed electron transport layer, Appl. Phys. Lett. 94 (2009) 113302–1–3. [27] Y.-J. Kang, C. S. Kim, D. S. You, S. H. Jung, K. Lim, D.-G. Kim, J.-K. Kim, S. H. Kim, Y.-R. Shin, S.-H. Kwon and J.-W. Kang, Effect of electron transport layer crystallinity on the transient characteristics of inverted organic solar cells, Appl. Phys. Lett. 99 (2011) 073308–1–3. [28] S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O’Malley and A. K.-Y. Jen, Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer, Appl. Phys. Lett. 92 (2008) 253301–1–3. [29] H. Cheun, C. Fuentes-Hernandez, Y. H. Zhou, W. J. Potscavage, Jr., C. Fuentes-Hernandez, S. Kim, J. Shim, D. Amir and B. Kippelen, Electrical and optical properties of ZnO processed by atomic layer deposition in Inverted polymer solar cells, J. Phys. Chem. C 114 (2010) 20713–20718. [30] H.H. Liao, L.M. Chen, Z. Xu, G. Li and Y. Yang, Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer, Appl. Phys. Lett. 92 (2008) 173303–1–3. [31] Zhan’ao Tan, Wenqing Zhang, Zhiguo Zhang, Deping Qian, Ye Huang, Jianhui Hou and Yongfang Li, High-Performance Inverted Polymer Solar Cells with Solution-Processed Titanium Chelate as Electron-Collecting Layer on ITO Electrode, Adv. Mater. 24 (2012) 1476–1481. [32] P.-C. Yang, J.-Y. Sun, S.-Y. Ma, Y.-M. Shen, Y.-H. Lin, C.-P. Chen, and C.-F. Lin, Interface modification of a highly air-stable polymer solar cell, Sol. Energy Mater. Sol. Cells 98 (2012) 351–356. [33] M.-Y. Lin, C.-Y. Lee, S.-C. Shiu, I.-J. Wang, J.-Y. Sun, W.-H. Wu, Y.-H. Lin, J. -S. Huang and C.-F. Lin, Sol–gel processed CuOx thin film as an anode interlayer for inverted polymer solar cells, Org. Electron. 11 (2010) 1828–1834. [34] J.-S. Huang, C.-Y. Chou, M.-Y. Liu, K.-H. Tsai, W.-H. Lin, C.-F. Lin, Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods, Org. Electron. 10 (2009) 1060–1065. [35] C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong and W. Chen, Role of tungsten oxide in inverted polymer solar cells, Appl. Phys. Lett. 94 (2009) 043311–1–3. [36] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao and D. L. Kwong, An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer, Appl. Phys. Lett. 93 (2008) 221107–1–3. [37] 蔡進譯,超高效率太陽電池,物理雙月刊 27 (2005). [38] J. C. Bernede, Organic photovoltaic cells: History, principle and techniques, Journal of the Chilean Chemical Society 53, 2008, 1549-1564. Chapter 3 [1] C. Winder and N. S. Sariciftci, Low bandgap polymers for photon harvesting in bulk heterojunction solar cells, J. Mater. Chem. 14 (2004) 1077–1086. [2] E. Bundgaard and F. C. Krebs, Low band gap polymers for organic photovoltaics, Sol. Energy Mater. Sol. Cells 91 (2007) 954–985. [3] Xugang Guo, Hao Xin, Felix Sunjoo Kim, Arawwawala D. T. Liyanage, Samson A. Jenekhe and Mark D. Watson, Thieno[3,4-c]pyrrole-4,6-dione-Based Donor-Acceptor Conjugated Polymers for Solar Cells, Macromolecules 44 (2011) 269–277. [4] Pierre-Luc T. Boudreault, Ahmed Najari and Mario Leclerc, Processable Low-Bandgap Polymers for Photovoltaic Applications, Chem. Mater. 23 (2011) 456–469. [5] Yingping Zou, Ahmed Najari, Philippe Berrouard, Serge Beaupre’ , Badrou Re’da Aı‥ch, Ye Tao and Mario Leclerc, A Thieno[3,4-c]pyrrole-4,6-dione-Based Copolymer for Efficient Solar Cells, J. Am. Chem. Soc. 132 (2010) 5330–5331. [6] Yong Zhang, Steven K. Hau, Hin-Lap Yip, Ying Sun, Orb Acton, and Alex K.-Y. Jen, Efficient Polymer Solar Cells Based on the Copolymers of Benzodithiophene and Thienopyrroledione, Chem. Mater. 22 (2010) 2696–2698. [7] Claudia Piliego, Thomas W. Holcombe, Jessica D. Douglas, Claire H. Woo, Pierre M. Beaujuge, and Jean M. J. Fre’chet, Synthetic Control of Structural Order in N-Alkylthieno[3,4-c]pyrrole-4,6-dione-Based Polymers for Efficient Solar Cells, J. Am. Chem. Soc. 132 (2010) 7595–7597. [8] Paul H.W‥obkenberg, Donal D.C. Bradley, David Kronholm, Jan C. Hummelen, Dago M. de Leeuw, Michael C‥ olle, Thomas D. Anthopoulos, High mobility n-channel organic field-effect transistors based on soluble C60 and C70 fullerene derivatives, Synthetic Metals 158 (2008) 468–472. [9] Y. Yao, C. Shi, G. Li, V. Shrotriya, Q. Pei and Y. Yang, Effects of C70 derivative in low band gap polymer photovoltaic devices: Spectral complementation and morphology optimization, Appl. Phys. Lett. 89 (2006) 153507–1–3. [10] P. A. Troshin, H. Hoppe, J. Renz, M. Egginger, J. Yu. Mayorova, A. E. Goryachev, A. S. Peregudov, R. N. Lyubovskaya, G. Gobsch, N. S. Sariciftci and V. F. Razumov, Material Solubility-Photovoltaic Performance Relationship in the Design of Novel Fullerene Derivatives for Bulk Heterojunction Solar Cells, Adv. Funct. Mater. 19 (2009) 779–788. [11] Toshinori Matsushima, Yoshiki Kinoshita, and Hideyuki Murata, Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic holetransporting layers, Appl. Phys. Lett. 91 (2007) 253504–1–3. [12] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao and D. L. Kwong, An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer, Appl. Phys. Lett. 93 (2008) 221107–1–3. [13] Yanming Sun, Christopher J. Takacs, Sarah R. Cowan, Jung Hwa Seo, Xiong Gong, Anshuman Roy and Alan J. Heeger, Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer, Adv. Mater. 23 (2011) 2226–2230. [14] Yanming Sun , Jung Hwa Seo , Christopher J. Takacs , Jason Seifter , and Alan J. Heeger, Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer, Adv. Mater. 2011, 23, 1679–1683. [15] Dhritiman Gupta, Monojit Bag and K. S. Narayana, Correlating reduced fill factor in polymer solar cells to contact effects, Appl. Phys. Lett. 92 (2008) 093301–1–3. [16] Ankit Kumar, Srinivas Sista, and Yang Yang, Dipole induced anomalous S-shape I-V curves in polymer solar cells, J. Appl. Phys. 105 (2009) 094512–1–6. [17] Shu Hotta, Electronic and Optical Properties of Conjugated Molecular Systems in Condensed Phases (2003). [18] Ing-Jye Wang, Shu-Chia Shiu, Ming-Yi Lin, Jing-Shun Huang, Yu-Hong Lin and Ching-Fuh Lin, Improvement of Inverted-type Organic Solar Cells by Mild Oxygen Plasma Etching on Polymer Thin Film, Solar Energy Materials and Solar Cells 94 (2010) 1681–1685. [19] Hoi Nok Tsao, Don M. Cho, Insun Park, Michael Ryan Hansen, Alexey Mavrinskiy, Do Y. Yoon, Robert Graf, Wojciech Pisula, Hans Wolfgang Spiess, and Klaus M?ullen, Ultrahigh Mobility in Polymer Field-Effect Transistors by Design, J. Am. Chem. Soc. 133 (2011) 2605–2612. Chapter 4 [1] Toshinori Matsushima, Yoshiki Kinoshita, and Hideyuki Murata, Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic holetransporting layers, Appl. Phys. Lett. 91 (2007) 253504–1–3. [2] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao and D. L. Kwong, An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer, Appl. Phys. Lett. 93 (2008) 221107–1–3. [3] Yanming Sun, Christopher J. Takacs, Sarah R. Cowan, Jung Hwa Seo, Xiong Gong, Anshuman Roy and Alan J. Heeger, Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer, Adv. Mater. 23 (2011) 2226–2230. [4] Yanming Sun , Jung Hwa Seo , Christopher J. Takacs , Jason Seifter , and Alan J. Heeger, Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer, Adv. Mater. 2011, 23, 1679–1683. [5] T. Stubhan, T. Ameri, M. Salinas, J. Krantz, F. Machui, M. Halik and C. J. Brabec, High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension, Appl. Phys. Lett. 98 (2011) 253308–1–3. [6] C. Girotto, E. Voroshazi, D. Cheyns, P. Heremans and B. P. Rand, Solution-processed MoO3 thin films as a hole-injection layer for organic solar cells, Appl. Mater. Interfaces 3 (2011) 3244–3247. [7] S. R. Hammond, J. Meyer, N. E. Widjonarko, P. F. Ndione, A. K. Sigdel, A. Garcia, A. Miedaner, M. T. Lloyd, A. Kahn, D. S. Ginley, J. J. Berry and D. C. Olson, Low-temperature, solution-processed molybdenum oxide hole-collection layer for organic photovoltaics, J. Mater. Chem. 22 (2012) 3249–3254. [8] K. Zilberberg, H. Gharbi, A. Behrendt, S. Trost and T. Riedl, Low-temperature, solution-processed MoOx for efficient and stable organic solar cells, Appl. Mater. Interfaces 4 (2012) 1164–1168. [9] S.Y. Chiam, B. Dasgupta, D. Soler, M.Y. Leung, H. Liu, Z.E. Ooi, L.M. Wong, C.Y. Jiang, K.L. Chang, J. Zhang, Investigating the stability of defects in MoO3 and its role in organic solar cells, Sol. Energy Mater. Sol. Cells 99 (2012) 197–203. [10] J. Meyer, R. Khalandovsky, P. Gorrn and A. Kahn, MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics, Adv. Mater. 23 (2011) 70–73. [11] H.Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat. Photonics 3 (2009) 649–653. [12] C.-T. Lin, C.-H. Yeh, M.-H. Chen, S.-H. Hsu, C.-I Wu and T.-W. Pi, Influences of evaporation temperature on electronic structures and electrical properties of molybdenum oxide in organic light emitting devices, J. Appl. Phys. 107 (2010) 053703–1–3. [13] M. Vasilopoulou, L. C. Palilis, D. G. Georgiadou, P. Argitis, S. Kennou, L. Sygellou, I. Kostis, G. Papadimitropoulos, N. Konofaos, A. A. Iliadis and D. Davazoglou, Reduced molybdenum oxide as an efficient electron injection layer in polymer light-emitting diodes, Appl. Phys. Lett. 98 (2011) 123301–1–3. [14] M. Vasilopoulou, L. C. Palilis, D. G. Georgiadou, S. Kennou, I. Kostis, D. Davazoglou and P. Argitis, Barrierless hole injection through sub-bandgap occupied states in organic light emitting diodes using substoichiometric MoOx anode interfacial layer, Appl. Phys. Lett. 100 (2012) 013311–1–4. [15] A. V. Samokhin, N. V. Alekseev and Yu. V. Tsvetkov, Plasma-Assisted Processes for Manufacturing Nanosized Powder Materials, High Energy Chem. 40 (2006) 93–97. [16] V.D. Mihailetchi, P.W.M. Blom, J.C. Hummelen and M.T. Rispens, Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells, J. Appl. Phys. 94 (2003) 6849-6854. [17] P.K. Chua, J.Y. Chena, L.P. Wang and N. Huang, Plasma-surface modification of biomaterials, Mat. Sci. Eng. R 36 (2002) 143–206. [18] Christian Oehr, Plasma surface modification of polymers for biomedical use, Nucl. instrum. methods phys. res. b 208 (2003) 40–47. Chapter 5 [1] 董家齊、陳寬任,奇妙的物質第四態─電漿,《科學發展》2002年6月,354期,52 ~ 59頁。 [2] 張志振,射頻電容耦合電漿源中的電漿電位,機械工業雜誌,314期5月號。 [3] B. Eliasson, U. Kogelschatz, Non equilibrium volume plasma chemical processing, IEEE transaction on plasma science, 19 (1991) 10631077. [4] 張家豪、魏鴻文、翁政輝、柳克強、李安平、寇崇善、吳敏文、曾錦清、蔡文發、鄭國川,電漿源原理與應用之介紹,物理雙月刊(廿八卷二期)2006年4月,440頁~451頁。 [5] P.K. Chua, J.Y. Chena, L.P. Wang and N. Huang, Plasma-surface modification of biomaterials, Mat. Sci. Eng. R 36 (2002) 143–206. [6] Christian Oehr, Plasma surface modification of polymers for biomedical use, Nucl. instrum. methods phys. res. b 208 (2003) 40–47. [7] Jeffrey P. Youngblood and Thomas J. McCarthy, Ultrahydrophobic Polymer Surfaces Prepared by Simultaneous Ablation of Polypropylene and Sputtering of Poly(tetrafluoroethylene) Using Radio Frequency Plasma, Macromolecules 32 (1999) 6800-6806. [8] Ferencz S. Denes and Sorin Manolache, Macromolecular plasma-chemistry: an emerging field of polymer science, Prog. Polym. Sci. 29 (2004) 815–885. [9] H. Yasuda and M. Gazick, Biomedical alpplications of plasma polymerization and plasma treatment of polymer surfaces, Biomaterials 3 (1982) 68–77. [10] E.M. Johnson, S. J. Clarson, H. Jiang, W. Su, J. T. Grant and T. J. Bunning, Plasma polymerized hexamethyldisiloxane (HMDS) barrier layers, Polymer 42 (2001) 7215–7219. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64110 | - |
| dc.description.abstract | 近年來人們已經意識到能源短缺的危機,新的替代能源成為研究的重點。高
分子太陽能電池因為有達成大面積、低成本生產以及可撓曲的廣泛應用潛力,在 近二十年來已經成為受到關注的一種再生綠能。為了增加太陽光紅外頻譜的吸收, 不同的低能隙高分子(low-bandgap)材料已經被合成來取代 P3HT。而另一種受體材料PC71BM也被用來增加短波長太陽光的吸收並提供更適合低能隙高分子材料的 LUMO能階,取代了PC61BM。 除了效率上的提升,倒置結構太陽能電池也已經被開發來增進元件的生命週 期。在傳統結構中,PEDOT:PSS及Al被分別用來當作電洞傳輸層以及陰電極。 PEDOT:PSS已經被證實擁有腐蝕ITO電極的酸性,而低功函數的Al也很容易氧 化;這些都是造成元件衰退的機制,也降低了元件的穩定度。相對地,倒置結構 高分子太陽能電池在製作上使用高功函數金屬做為陽電極,並且避免了 PEDOT:PSS 與 ITO 的接觸。除此之外,吸光主動層以三明治結構被夾在對空氣穩定的金屬氧化物之間,也產生了類似封裝的效果。 在本篇論文中,為了研究並實現高效率的倒置結構高分子太陽能電池,我們 使用了商業上可以買到的低能隙高分子PBDTTPD來做為主動層予體(donar)材料。經過了一連串最佳化實驗之後,我們發現以蒸鍍的MoOx來做為電洞傳輸層能使 得元件表現有大幅度的提升。同時,研究結果顯示這裡使用的PBDTTPD分子量 過低,很難有好的載子遷移率及表面形態,因而元件表現受到限制。所以接著我 們改用另一個市面上販售的低能隙高分子材料PBDTTT-C與PC71BM搭配作為主 動層,並在主動層已優化的條件下使用溶液製程MoO3作為電洞傳輸層,期許能實 現在低成本、大面積製程下高效率、高穩定的倒置太陽能電池。我們嘗試在 MoO 3 旋鍍完之後使用電漿處理來修飾陽極,不僅還原 MoO 3 以增加電洞傳導效率,也經由界面修飾獲得更好的陽極接觸,使得短路電流、開路電壓等元件表現參數獲得 大幅的提升,光電轉換效率也由從原本溶液製程 MoO 3 的 2.50%上升到 4.01%。接著,我們調變電漿處理時的腔體壓力、電漿處理時的強度以及時間來做最佳化,使得溶液製程MoO3倒置元件的光電轉換效率進一步提升至4.65%。 本論文中使用的溶液製程MoO3不須退火處理也不需高度真空,有助低成本大面積的製作。此研究提供溶液製程金屬氧化物在倒置結構高分子太陽能電池上的 新穎應用方法,不僅能提高效率表現,也有利於高分子太陽能電池的商業化。 | zh_TW |
| dc.description.abstract | In recent years, people have realized the crisis of energy shortage; therefore, replacement energy to fossil fuels becomes an important issue. Polymer photovoltaics
(PVs), serving as renewable green energy sources, have attracted much attention in the past two decades due to the potential of achieving low-cost process over a large area and flexibility for versatile applications. To enhance the harvest of infrared solar radiation, different low-bandgap polymers have been synthesized. Further compensating for the short-wavelength light absorption and providing more compatible LUMO level for low-bandgap polymer materials, another acceptor material, [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), is often used to replace [6, 6]-phenyl- C61-butyric acid methyl ester (PC61BM). Except for efficiency improvement, a structure with reverse electron flow, which is named inverted structure, has been investigated to enhance device lifetime. In this work, in order to investigate and attain high efficient inverted polymer PVs, we use a commercial low- bandgap polymer PBDTTPD as electron donar material in photoactive layer. Via a series of experiments for optimization, we find that there is an improvement when thermally deposited molybdenum oxide (MoOx) is used as hole transport layer. At the same time, the research results show that the molecular weight of PBDTTPD we used is too low to have excellent carrier mobility and morphology, thus limiting the device performance. Therefore, we replace the donar material with another commercial low-bandgap polymer PBDTTT-C and blend it with PC71BM as photo-active layer. Solution-processed MoO3 is spin-casted on the optimized photoactive layer to attain highly efficient and stable inverted polymer PVs under low cost and large-area fabrication. We try using plasma treatment to modify the anode after MoO3 is spin-casted. This treatment not only reduces the oxygen ratio of MoO3 for more efficient hole transport, but also modifies the interface for better contact with anode, which leads to the enhancement in short-circuit current-density (Jsc) and open-circuit voltage (Voc), thus raising the power conversion efficiency (PCE) from 2.50% to 4.01%. In the following experiments, we alter the parameter of plasma treatment to optimize, including the pressure of the chamber, the power set of plasma, and the treating time. As a result, the PCE of the device with solution-processed MoO3 enhances again to 4.65%. As a result, this work provides a novel function for the application of solution-processed metal oxide to inverted polymer PVs. This not only improves the PCE of PVs but also benefits the commercialization of polymer PVs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:30:27Z (GMT). No. of bitstreams: 1 ntu-101-R98941011-1.pdf: 5175851 bytes, checksum: 7e1c840e1638c85b05a80f2e91fb2400 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目錄
口試委員審定書.............................................. I 致謝..................................................... II 摘要.................................................... III Abstract ................................................. V 目錄.................................................... VII 圖目錄 ................................................... IX 表目錄 ................................................... XI 第一章 緒論 .............................................. 1 1.1 簡介 ............................................... 1 1.2 太陽能電池的發展 ...................................... 3 1.3 有機高分子太陽能電池的發展 ............................. 5 1.3.1 高分子的發展簡史.................................... 5 1.3.2 光電轉換效率的提升 ................................. 6 1.4 參考資料............................................ 10 第二章 高分子太陽能電池的原理與結構 .......................... 15 2.1 運作機制與原理 ...................................... 15 2.1.1 共軛高分子的導電機制 .............................. 15 2.1.2 共軛高分子的光伏效應 .............................. 17 2.2 太陽能電池結構 ...................................... 23 2.2.1 主動層結構 ...................................... 23 2.2.2 倒置電池元件 ..................................... 25 2.3 電壓電流特性分析 ..................................... 26 2.3.1 等效電路 ........................................ 26 2.3.2 元件表現參數 ..................................... 28 2.4 參考資料............................................ 31 第三章 PBDTTPD 低能隙高分子倒置太陽能電池 .................... 37 3.1 簡介 .............................................. 37 3.1.1 研究動機 ........................................ 37 3.1.2 低能隙高分子 PBDTTPD 簡介.......................... 38 3.2 實驗步驟............................................ 40 3.2.1 使用藥品配置 ..................................... 40 3.2.2 元件結構及製備流程 ................................ 40 3.3 實驗結果與討論 ...................................... 44 3.3.1 使用不同主動層電子受體對元件表現的影響 ................ 44 3.3.2 使用不同電洞傳輸層或電子阻擋層對元件表現的影響 ......... 48 3.3.3 調整主動層條件對元件表現的影響 ...................... 51 3.4 結論 .............................................. 57 3.5 參考資料............................................ 58 第四章 溶液製程氧化鉬結合電漿修飾陽極以增進光伏表現.............. 62 4.1 簡介 .............................................. 62 4.1.1 研究動機 ........................................ 62 4.1.2 低能隙高分子 PBDTTT-C 簡介 ........................ 63 4.2 實驗步驟............................................ 65 4.2.1 使用藥品配置 ..................................... 65 4.2.2 元件結構及製備流程 ................................ 65 4.3 實驗結果與討論 ...................................... 69 4.3.1 溶液製程氧化鉬結合電漿處理對於太陽能電池表現的影響 ...... 69 4.3.2 電漿處理修飾對氧化鉬的影響 ......................... 72 4.3.3 電漿處理修飾對界面的影響 ........................... 76 4.4 結論 .............................................. 78 4.5 參考資料............................................ 79 第五章 電漿處理條件對溶液製程氧化鉬修飾之元件的影響.............. 83 5.1 簡介 .............................................. 83 5.1.1 研究動機 ........................................ 83 5.1.2 電漿處理 ........................................ 84 5.2 實驗步驟............................................ 85 5.2.1 使用藥品配置 ..................................... 85 5.2.2 元件結構及製備流程 ................................ 85 5.3 實驗結果與討論 ...................................... 89 5.3.1 電漿處理時腔體壓力對元件的影響 ...................... 89 5.3.2 電漿處理時間對元件的影響 ........................... 93 5.4 結論 .............................................. 97 5.5 參考資料............................................ 98 第六章 結論與未來展望 .................................... 100 6.1 總論 ............................................. 100 6.2 建議與未來展望 ..................................... 101 著作列表 ................................................ 102 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電漿處理 | zh_TW |
| dc.subject | 溶液製程 | zh_TW |
| dc.subject | 氧化鉬 | zh_TW |
| dc.subject | 倒置 | zh_TW |
| dc.subject | 低能隙 | zh_TW |
| dc.subject | 高分子太陽能電池 | zh_TW |
| dc.subject | solution-process | en |
| dc.subject | low-bandgap | en |
| dc.subject | inverted | en |
| dc.subject | polymer photovoltaics | en |
| dc.subject | MoO 3 | en |
| dc.subject | plasma treatment | en |
| dc.title | 倒置低能隙高分子太陽能電池及溶液製程氧化鉬的界面修飾研究 | zh_TW |
| dc.title | Inverted Low-bandgap Polymer Photovoltaics and
Investigation of The Interface Modification of Solution-Processed Molybdenum Oxide | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周必泰,陳奕君,吳肇欣,陳協志 | |
| dc.subject.keyword | 高分子太陽能電池,低能隙,倒置,氧化鉬,溶液製程,電漿處理, | zh_TW |
| dc.subject.keyword | polymer photovoltaics,low-bandgap,inverted,MoO 3,solution-process,plasma treatment, | en |
| dc.relation.page | 105 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 5.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
