Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64099
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫啟光(Chi-Kuang Sun)
dc.contributor.authorYu-Ru Huangen
dc.contributor.author黃郁儒zh_TW
dc.date.accessioned2021-06-16T17:29:57Z-
dc.date.available2017-08-18
dc.date.copyright2012-08-18
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citation[1] K. H. Yang, P. L. Richards, and Y. R. Shen, 'Generation of Far‐Infrared Radiation by Picosecond Light Pulses in LiNbO3,' Appl. Phys. Lett., vol. 19, p. 320, 1971.
[2] Y. R. Shen, 'Far-infrared generation by optical mixing,' Proc. Quantum Electron., vol. 4, pp. 207-232, 1976.
[3] Jin-Wei Shi, Shi-Wei Chu, Ming-Chun Tien, Chi-Kuang Sun, Yi-Jen Chiu, and John E. Bowers, 'Edge-coupled membrane terahertz photonic transmitters based on metal–semiconductor–metal traveling-wave photodetectors,' Appl. Phys. Lett., vol. 81, pp. 5108-5110, 2002.
[4] Hiroshi Ito, Satoshi Kodama, Yoshifumi Muramoto, Tomofumi Furuta, Tadao Nagatsuma, and Tadao Ishibashi, 'High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,' IEEE J. Sel. Toptics Quantum Electron., vol. 10, pp. 709-727, 2004.
[5] Tzeng-Fu Kao, Hsu-Hao Chang, Li-Jin Chen, Ja-Yu Lu, An-Shyi Liu, Yi-Chun Yu, Ruey-Beei Wu, Wei-Sheng Liu, Jen-Inn Chyi, and Chi-Kuang Sun, 'Frequency tunability of terahertz photonic transmitters,' Appl. Phys. Lett., vol. 88, pp. 093501-3, 2006.
[6] Z. D. Taylor, E. R. Brown, J. E. Bjarnason, M. P. Hanson, and A. C. Gossard, 'Resonant-optical-cavity photoconductive switch with 0.5% conversion efficiency and 1.0W peak power,' Opt. Lett., vol. 31, pp. 1729-1731, 2006.
[7] V. Radisic, X. B. Mei, W. R. Deal, W. Yoshida, P. H. Liu, J. Uyeda, M. Barsky, L. Samoska, A. Fung, T. Gaier, and R. Lai, 'Demonstration of Sub-Millimeter Wave Fundamental Oscillators Using 35-nm InP HEMT Technology,' IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 223-225, 2007.
[8] Yu-Ru Huang, Chung-Chiu Kuo, Chiu-Min Chiu, Hung-Pin Chen, Tzeng-Fu Kao, Yi-Chun Chen, An-Shyi Liu, Ruey-Beei Wu, Pei-Chin Chiu, Jen-Inn Chyi, and Chi-Kuang Sun, 'Highly Directed Radiation Pattern From a THz Photonic Transmitter With a Two-Dimensional Rampart Slot Array Antenna,' IEEE Photon. Technol. Lett., vol. 20, pp. 1042-1044, 2008.
[9] W. R. Deal, X. B. Mei, V. Radisic, K. Leong, S. Sarkozy, B. Gorospe, J. Lee, P.H. Liu, W. Yoshida, J. Zhou, M. Lange, J. Uyeda, and R. Lai, 'Demonstration of a 0.48 THz Amplifier Module Using InP HEMT Transistors,' IEEE Microw. Wireless Compon. Lett., vol. 20, pp. 289-291, 2010.
[10] Jonathan Hacker, Munkyo Seo, Adam Young, Zach Griffith, Miguel Urteaga, Thomas Reed, and Mark Rodwell, 'THz MMICs based on InP HBT Technology,' in Microwave Symposium Digest (MTT), 2010 IEEE MTT-S International 2010, pp. 1126-1129
[11] Sushil Kumar, Chun Wang I. Chan, Qing Hu, and John L. Reno, 'A 1.8-THz quantum cascade laser operating significantly above the temperature of ω/kB,' Nature Phys., vol. 7, pp. 166-171, 2011.
[12] Ja-Yu Lu, Li-Jin Chen, Tzeng-Fu Kao, Hsu-Hao Chang, Hung-Wen Chen, An-Shyi Liu, Yi-Chun Chen, Ruey-Beei Wu, Wei-Sheng Liu, Jeng-Inn Chyi, and Chi-Kuang Sun, 'Terahertz Microchip for Illicit Drug Detection,' IEEE Photon. Technol. Lett., vol. 18, pp. 2254-2256, 2006.
[13] M.R. Leahy-Hoppaa, M.J. Fitcha, X. Zhengb, L.M. Haydenb, and R. Osiandera, 'Wideband terahertz spectroscopy of explosives,' Chem. Phys. Lett., vol. 434, pp. 227–230, 2007.
[14] Chui-Min Chiu, Hung-Wen Chen, Yu-Ru Huang, Yuh-Jing Hwang, Wen-Jeng Lee, Hsin-Yi Huang, and Chi-Kuang Sun, 'All-terahertz fiber-scanning near-field microscopy,' Opt. Lett., vol. 34, pp. 1084-1086, 2009.
[15] Hua Chen, Te-Hsuen Chen, Tzu-Fang Tseng, Jen-Tang Lu, Chung-Chiu Kuo, Shih-Chen Fu, Wen-Jeng Lee, Yuan-Fu Tsai, Yi-You Huang, Eric Y Chuang, Yuh-Jing Hwang, and Chi-Kuang Sun, 'High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model,' Opt. Express, vol. 19, pp. 21552-21562, 2011.
[16] Akihide Sano, Hiroji Masuda, Yoshiaki Kisaka, Shigeki Aisawa, Eiji Yoshida, Yutaka Miyamoto, Masafumi Koga, Kazuo Hagimoto, Takashi Yamada, Tomofumi Furuta, and Hiroyuki Fukuyama, '14-Tb/s (140 x 111-Gb/s PDM/WDM) CSRZ-DQPSK Transmission over 160 km Using 7-THz Bandwidth Extended L-band EDFAs,' in Euro. Conf. Opt. Commun., 2006. ECOC 2006., 2006, pp. postdeadline paper, Th4.1.1.
[17] A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, '69.1-Tb/s (432 × 171-Gb/s) C- and extended L-band transmission over 240 km Using PDM-16-QAM modulation and digital coherent detection,' in Opt. Fiber Commun., Nat. Fiber Opt. Eng. Conf., 2010 Conf. (OFC/NFOEC), 2010, pp. 1-3.
[18] B. Sartorius, H. Roehle, H. Kunzel, J. Bottcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, 'All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths,' Opt. Express, vol. 16, pp. 9565-9570, 2008.
[19] R. Inoue, Ohno Y, and M. Tonouchi, 'Development of compact mobile THz-TDS head,' in Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, 2005. IRMMW-THz 2005. The Joint 30th International Conference on, 2005, pp. 395-396.
[20] H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. lshibashi, 'High-power photonic millimeter-wave generation at 100GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,' Proc. Inst. Elect. Eng. Optoelectron., vol. 150, pp. 138-142, 2003.
[21] H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, 'InP/InGaAs uni-travelling-carrier photodiode with a 310 GHz bandwidth,' Electron. Lett., vol. 36, pp. 1809-1810, 2000.
[22] Tadao Ishibashi, Tomofumi Furuta, Hiroshi Fushimi, Satoshi Kodama, Hiroshi Ito, Tadao Nagatsuma, Naofumi Shimizu, and Yutaka Miyamoto, 'InP/InGaAs uni-traveling-carrier photodiodes,' IEICE Trans. Electron., vol. E83-C, pp. 938-949, 2000.
[23] Hiroshi Ito, Tomofumi Furuta, Fumito Nakajima, Kaoru Yoshino, and Tadao Ishibashi, 'Photonic generation of continuous THz wave using uni-traveling-carrier photodiode,' J. Lightw. Technol., vol. 23, pp. 4016-4021, 2005.
[24] Gerard Mourou, Charles V. Stancampiano, and Daniel Blumenthal, 'Picosecond microwave pulse generation,' Appl. Phys. Lett., vol. 38, p. 470, 1981.
[25] D. H. Auston, K. P. Cheung, and P. R. Smith, 'Picosecond photoconducting Hertzian dipoles,' Appl. Phys. Lett., vol. 45, pp. 284-286, 1984.
[26] Hsu-Hao Chang, 'Frequency-tunable Edge-coupled Membrane Terahertz Photonic Transmitters,' Master Thesis, Institute of Electro-Optical Engineering, Department of Electrical Engineering, National Taiwan University, Taipei, 2004.
[27] Hsuan-Ju Tsai, Nan-Wei Chen, Fon-Ming Kuo, and Jin-Wei Shi, 'Front-end design of W-band integrated photonic transmitter with wide optical-to-electrical bandwidth for wireless-over-fiber applications,' in Proc. IEEE MTT IMS 2010, Anaheim, CA, May 2010, pp. 740-743.
[28] Jim-Wein Lin, H.-P. Chuang, F.-M. Kuo, Cheng-Han Lin, Tze-An Liu, Jin-Wei Shi, Chen-Bin Huang, and Ci-Ling Pan, 'Enhanced Performance of Narrowband Millimeter-Wave Generation Using Shaped-Pulse-Excited Photonic Transmitters,' IEEE Photon. Technol. Lett., vol. 23, pp. 902-904, 2011.
[29] E. R. Brown, J. R. Soderstrom, C. D. Parker, L. J. Mahoney, K. M. Molvar, and T. C. McGill, 'Oscillations up to 712 GHz in InAs/AlSb resonant‐tunneling diodes,' Appl. Phys. Lett., vol. 58, p. 2291, 1991.
[30] Roger Lake, Gerhard Klimeck, R. Chris Bowen, and Dejan Jovanovic, 'Single and multiband modeling of quantum electron transport through layered semiconductor devices,' J. Appl. Phys., vol. 81, p. 7845, 1997.
[31] Masahiro Asada, Safumi Suzuki, and Naomichi Kishimoto, 'Resonant Tunneling Diodes for Sub-Terahertz and Terahertz Oscillators,' Jpn. J. Appl. Phys., vol. 47, pp. 4375-4384, 2008.
[32] William Deal, X. B. Mei, Kevin M. K. H. Leong, Vesna Radisic, S. Sarkozy, and Richard Lai, 'THz Monolithic Integrated Circuits Using InP High Electron Mobility Transistors,' IEEE Trans. Terahz. Sci. Technol., vol. 1, pp. 25-32, 2011.
[33] William. R. Deal, K. Leong, V. Radisic, S. Sarkozy, B. Gorospe, J. Lee, P. H. Liu, W. Yoshida, J. Zhou, M. Lange, R. Lai, and X. B. Mei, 'Low Noise Amplification at 0.67 THz Using 30 nm InP HEMTs,' IEEE Microw. Wireless Compon. Lett., vol. 21, pp. 368-370, 2011.
[34] M. Urteaga, M. Seo, J. Hacker, Z. Griffith, A. Young, R. Pierson, P. Rowell, A. Skalare, and M.J.W. Rodwell, 'InP HBT Integrated Circuit Technology for Terahertz Frequencies,' in Proc. IEEE Compound Semicond. Integr. Circuit Symp., Monterey, CA, Oct. 2010, pp. 1-4.
[35] V. Radisic, X. B. Mei, W. R. Deal, W. Yoshida, P. H. Liu, J. Uyeda, M. Barsky, L. Samoska, A. Fung, T. Gaier, and R. Lai, 'Demonstration of Sub-Millimeter Wave Fundamental Oscillators Using 35-nm InP HEMT Technology,' IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 223-225, 2007.
[36] Rudeger Kohler, Alessandro Tredicucci, Fabio Beltram, Harvey E. Beere, Edmund H. Linfield, A. Giles Davies, David A. Ritchie, Rita C. Iotti, and Fausto Rossi, 'Terahertz semiconductor-heterostructure laser,' Nature, vol. 417, pp. 156-159, 2002.
[37] M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, 'Low-divergence single-mode terahertz quantum cascade laser,' Nature Photo., vol. 3, pp. 586-590, 2009.
[38] R. F. Kazarinov and R. A. Suris, 'Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice,' Sov. Phys. Semicond., vol. 5, pp. 707-709, 1971.
[39] Sushil Kumar, Qing Hu, and John L. Reno, '186 K operation of terahertz quantum-cascade lasers based on a diagonal design,' Appl. Phys. Lett., vol. 94, p. 131105, 2009.
[40] Christoph Walther, Milan Fischer, Giacomo Scalari, Romain Terazzi, Nicolas Hoyler, and Jerome Faist, 'Quantum cascade lasers operating from 1.2 to 1.6 THz,' Appl. Phys. Lett., vol. 91, p. 131122, 2007.
[41] Goutam Chattopadhyay, 'Technology, Capabilities, and Performance of Low Power Terahertz Sources,' IEEE Trans. Terahz. Sci. Technol., vol. 1, pp. 33-53, 2011.
[42] Chih-Hsien Lai, Yu-Chun Hsueh, Hung-Wen Chen, Yuh-jing Huang, Hung-chun Chang, and Chi-Kuang Sun, 'Low-index terahertz pipe waveguides,' Opt. Lett., vol. 34, pp. 3457–3459, 2009.
[43] http://www.thorlabs.com/thorProduct.cfm?partNumber=SM1500G80.
[44] Zhencan Frank Fan and Mario Dagenais, 'Optical generation of a megahertz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop,' IEEE Trans. Microwave Theory and Tech., vol. 45, pp. 1296-1300, 1997.
[45] Tadao Nagatsuma, Hiroshi Ito, and Tadao Ishibashi, 'High-power RF photodiodes and their applications,' Laser & Photon. Rev., vol. 3, pp. 123-137, 2009.
[46] A. Hirata, H. Togo, N. Shimizu, H. Takahashi, K. Okamoto, and T. Nagatsuma, 'Low-phase noise photonic millimeterwave generator using an AWG integrated with a 3-dB combiner,' IEICE Trans. Electron., vol. E88-C, pp. 1458-1464, 2005.
[47] Ho-Jin Song, Naofumi Shimizu, and Tadao Nagatsuma, 'Generation of two-mode optical signals with broadband frequency tunability and low spurious signal level,' Opt. Express, vol. 15, pp. 14901–14906, 2007.
[48] C. F. C. Silva, A. J. Seeds, and P. J. Williams, 'Terahertz span >60-channel exact frequency dense WDM source using comb generation and SG-DBR injection-locked laser filtering,' IEEE Photon. Technol. Lett., vol. 13, pp. 370-372, 2001.
[49] Pengbo Shen, Nathan J. Gomes, Phillip A. Davies, Peter G. Huggard, and Brian N. Ellison, 'Analysis and demonstration of a fast tunable fibre-ring-based optical frequency comb generator,' IEEE J. Lightw. Technol., vol. 25, pp. 3257–3264, 2007.
[50] Ho-Jin Song, Naofumi Shimizu, Tomofumi Furuta, Koji Suizu, Hiroshi Ito, and Tadao Nagatsuma, 'Broadband-frequency-tunable sub-terahertz wave generation using an optical comb signal, AWGs, optical switches, and uni-travelling carrier photodiode for spectroscopic applications,' IEEE J. Lightw. Technol., vol. 26, pp. 2521-2530, 2008.
[51] Jin-Wei Shi, Chen-Bin Huang, and Ci-Ling Pan, 'Millimeter-wave photonic wireless links for very high data rate communication,' NPG Asia Mater., vol. 3, pp. 41-48, 2011.
[52] Edmond B. Treacy, 'Optical pulse compression with diffraction gratings,' IEEE J. Quantum Electron., vol. QE-5, pp. 454-458, 1969.
[53] Aniruddha S. Weling and David H. Auston, 'Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space,' J. Opt. Soc. Am. B, vol. 13, pp. 2783-2791, 1996.
[54] Andrew M. Weiner, Daniel E. Leaird, J. S. Patel, and John R. Wullert II, 'Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,' IEEE J. Quantum Electron., vol. 28, pp. 908-920, 1992.
[55] A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, 'Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,' Opt. Express, vol. 15, pp. 326-328, 1990.
[56] F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, 'Spectral Power Enhancement in a 100 GHz Photonic Millimeter-Wave Generator Enabled by Spectral Line-by-Line Pulse Shaping,' IEEE Photon. J., vol. 2, pp. 719-727, 2010.
[57] Hao Chi and Jianping Yao, 'All-Fiber Chirped Microwave Pulses Generation Based on Spectral Shaping and Wavelength-to-Time Conversion,' IEEE Trans. Microwave Theory and Tech., vol. 55, pp. 1958-1963, 2007.
[58] E. H. W. Chan and R. A. Minasian, 'Sagnac-Loop-Based Equivalent Negative Tap Photonic Notch Filter,' IEEE Photon. Technol. Lett., vol. 17, pp. 1740-1742, 2005.
[59] Hao Chi and Jianping Yao, 'An Approach to Photonic Generation of High-Frequency Phase-Coded RF Pulses,' IEEE Photon. Technol. Lett., vol. 19, pp. 768-770, 2007.
[60] Chao Wang and Jianping Yao, 'Photonic Generation of Chirped Millimeter-Wave Pulses Based on Nonlinear Frequency-to-Time Mapping in a Nonlinearly Chirped Fiber Bragg Grating,' IEEE Trans. Microwave Theory and Tech., vol. 56, pp. 542-553, 2008.
[61] Daryoosh Saeedkia, Amir Hamed Majedi, Safieddin Safavi-Naeini, and Raafat R. Mansour, 'Analysis and design of a photoconductive integrated photomixer/antenna for terahertz applications,' IEEE J. Quantum Electron., vol. 41, pp. 234-241, 2005.
[62] M. Lalande, J.-C. Diot, S. Vauchamp, J. Andrieu, V. Bertrand, B. Beillard, B. Vergne, V. Couderc, A. Barthelemy, D. Gontier, R. Guillerey, and M. Brishoual, 'An ultra wideband impulse optoelectronic radar: rugbi,' Progress In Electromagnetics Research B, vol. 11, pp. 205-222, 2009.
[63] Naofumi Shimizu and Tadao Nagatsuma, 'Photodiode-integrated microstrip antenna array for subterahertz radiation,' IEEE Photon. Technol. Lett., vol. 18, pp. 743–745, 2006.
[64] Huan-Chang Liu, Tzyy-Sheng Homg, and Nicolaos G. Alexopoulos, 'Radiation of printed antennas with a coplanar waveguide feed,' IEEE Trans. Antennas Propag., vol. 43, pp. 1143–1148, 1995.
[65] Shih-Yuan Chen and Powen Hsu, 'Rampart slot array fed by coplanar waveguide,' in Asia-Pacific Microwave Conf., Kyoto, Japan, 2002, pp. 1286–1287.
[66] Jin-Wei Shi, Kian-Giap Gan, Yen-Hung Chen, Chi-Kuang Sun, Yi-Jen Chiu, and John E. Bowers, 'Ultrahigh-power-bandwidth product and nonlinear photoconductance performances of low-temperature-grown GaAs-based metal–semiconductor–metal traveling-wave photodetectors,' IEEE Photon. Technol. Lett., vol. 14, pp. 1587-1589, 2002.
[67] Jin-Wei Shi, Kian-Giap Gan, Yi-Jen Chiu, Yen-Hung Chen, Chi-Kuang Sun, Ying-Jay Yang, and John E. Bowers, 'Metal-semiconductor-metal traveling-wave photodetectors,' IEEE Photon. Technol. Lett., vol. 13, pp. 623-625, 2001.
[68] Jin-Wei Shi and Chi-Kuang Sun, 'Design and analysis of long absorption length traveling-wave photodetectors,' J. Lightw. Technol., vol. 18, pp. 2176–2187, 2000.
[69] Jin-Wei Shi, 'Metal-semiconductor-metal traveling-wave photodetector,' Ph.D. Thesis, Institute of Electro-Optical Engineering, Department of Electrical Engineering, National Taiwan University, Taipei, 2002.
[70] James Sor, Yongxi Qian, and Tatsuo Itoh, 'Miniature low-loss CPW periodic structures for filter applications,' IEEE Trans. Microw. Theory Tech., vol. 49, pp. 2336-2341, 2001.
[71] Chen Yi-Chun, Liu An-Shyi, Chen Shih-Yuan, Wu Ruey-Beei, and Kuang Chi, 'Design of rampart slot array antenna in integrated 850GHz photonic transmitter,' in Microwave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference Proceedings, 2005, p. 3 pp.
[72] Kai Fong Lee and Wei Chen, Advances in Microstrip and Printed Antennas. New York: Wiley-Interscience, 1997.
[73] S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, 'Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,' Appl. Phys. Lett., vol. 59, pp. 3276-3278, 1991.
[74] Shantanu Gupta, John F. Whitaker, and Gerard A. Mourou, 'Ultrafast carrier dynamics in Ⅲ-Ⅴ semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,' IEEE J. Quantum Electron., vol. 28, pp. 2464-2472, 1992.
[75] K. A. Mclntosh, K. B. Nichols, S. Verghese, and E. R. Brown, 'Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,' Appl. Phys. Lett., vol. 70, pp. 354-356, 1997.
[76] A.S. Weling, B.B. Hu, N.M. Froberg, and D.H. Auston, 'Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,' Appl. Phys. Lett., vol. 64, pp. 137-139, 1994.
[77] Ming-Chun Tien, Hsu-Hao Chang, Ja-Yu Lu, Li-Jin Chen, Shih-Yuan Chen, Ruey-Beei Wu, Wei-Sheng Liu, Jen-Inn Chyi, and Chi-Kuang Sun, 'Device saturation behavior of submillimeter-wave membrane photonic transmitters,' IEEE Photon. Technol. Lett., vol. 16, pp. 873–875, 2004.
[78] Kiyomi Sakai, Ed., Terahertz Optoelectronics (Topics Appl. Phys. 97). Springer-Verlag Berlin Heidelberg, 2005, p.^pp. Pages.
[79] N. Zamdmer, Qing Hu, K. A. McIntosh, and S. Verghese, 'Increase in response time of low-temperature-grown GaAs photoconductive switches at high voltage bias,' Appl. Phys. Lett., vol. 75, p. 2313, 1999.
[80] S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, 'THz near-field imaging,' Opt. Commun., vol. 150, pp. 22-26, 1998.
[81] Andrea Vallecchi and Guido Biffi Gentili, 'Microstrip fed slot antennas backed by a very thin cavity,' Microw. Opt. Technol. Lett., vol. 49, pp. 247-250, 2007.
[82] David M Pozar, Microwave Engineering, 3rd ed.: JohnWiley and Sons, Inc., 2005.
[83] Fang-Lih Lin and Ruey-Beei Wu, 'Computations for Radiation and Surface-Wave Losses in Coplanar Waveguide Bandpass Filters,' IEEE Trans. Microw. Theory Tech., vol. 47, pp. 385-389, 1999.
[84] Shih-Yuan Chen and Powen Hsu, 'Open-Ended Rampart Slot Array Antenna Fed by a CPW,' IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 320-322, 2005.
[85] Z. G. Lu, P. Campbell, and X.-C. Zhang, 'Free-space electro-optic sampling with a high-repetition-rate regenerative amplified laser,' Appl. Phys. Lett., vol. 71, pp. 593-595, 1997.
[86] Ingrid Daubechies, 'The wavelet transform, time-frequency localization and signal analysis,' IEEE Transactions on Information Theory, vol. 36, pp. 961-1005, 1990.
[87] Rajind Mendis and Daniel M. Mittleman, 'Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,' Opt. Express, vol. 17, pp. 14839-14850, 2009.
[88] Robert W. Boyd, Nonlinear Optics, 2nd ed. San Diego: Elsevier Science, 2003.
[89] Daniel Mittleman, Ed., Sensing with Terahertz Radiation (Optical Sciences ). Germany: Springer-Verlag Berlin Heidelberg New York, 2003, p.^pp. Pages.
[90] Rainee N. Simons, Coplanar Waveguide Circuits, Components, and Systems. New York: John Wiley & Sons, Inc., 2001.
[91] You-Chieh Chen, Shih-Yuan Chen, and Powen Hsu, 'A Modified CPW-Fed Slot Loop Antenna With Reduced Cross Polarization and Size,' IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1124-1126, 2011.
[92] Jin-Wei Shi, Yen-Hung Chen, Kian-Giap Gan, Yi-Jen Chiu, John E. Bowers, Ming-Chun Tien, Tzu-Ming Liu, and Chi-Kuang Sun, 'Nonlinear behaviors of low-temperature-grown GaAs-based photodetectors around 1.3-μm telecommunication wavelength,' IEEE Photon. Technol. Lett., vol. 16, pp. 242-244, 2004.
[93] Masahiko Tani, Shuji Matsuura, Kiyomi Sakai, and Shin-ichi Nakashima, 'Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,' Appl. Opt., vol. 36, pp. 7853-7859, 1997.
[94] George J. Simonis and Kenneth G. Purchase, 'Optical generation, distribution, and control of microwaves using laser heterodyne,' IEEE Trans. Microw. Theory Tech., vol. 38, pp. 667-669, 1990.
[95] D. V. Plant, D. C. Scott, H. R. Fetterman, L. K. Shaw, W. Jones, and K. L. Tan, 'Optically generated 60 GHz millimeter waves using AlGaAs/InGaAs HEMTs integrated with both quasi-optical antenna circuits and MMICs,' IEEE Photon. Technol. Lett., vol. 4, pp. 102-105, 1992.
[96] Lin-Jin Chen, 'Terahertz Subwavelength Fiber,' Master Thesis, Graduate Institute of Photonics and Optoelectronics, Department of Electrical Engineering, National Taiwan University, Taipei, 2005.
[97] Govind P. Agrawal, Nonlinear Fiber Optics, 2nd ed. San Diego: Academic Press, Inc., 1995.
[98] Farhad Hakimi and Hosain Hakimi, 'Measurement of optical fiber dispersion and dispersion slope using a pair of short optical pulses and Fourier transform property of dispersive medium,' Opt. Eng., vol. 40, pp. 1053-1056, 2001.
[99] Erich P. Ippen and Charles V. Shank, 'Techniques for measurement,' in Ultrashort Light Pulses, S. L. Shapiro, Ed., ed New York: Springer-Verlag, 1977, pp. 90-92.
[100] Yun-Shik Lee, Principles of Terahertz Science and Technology. New York: Springer Science+Business Media, LLC, 2009.
[101] Yu-Jiun Ren, Pengcheng Lv, and Kai Chang, 'Broadband Terahertz Antenna for Wide Band Gap Semiconductor Photoconductive Switches,' presented at the Ant. Propag. Soc. Internatl. Symp., 2008. AP-S 2008. IEEE 2008.
[102] Li-Jin Chen, Tzeng-Fu Kao, Ja-Yu Lu, and Chi-Kuang Sun, 'A simple terahertz spectrometer based on a low-reflectivity Fabry-Perot interferometer using Fourier transform spectroscopy,' Opt. Express, vol. 14, pp. 3840-3846, 2006.
[103] Ling Liao, Dean Samara-Rubio, Michael Morse, Ansheng Liu, Dexter Hodge, Doron Rubin, Ulrich Keil, and Thorkild Franck, 'High speed silicon Mach-Zehnder modulator,' Opt. Express, vol. 13, pp. 3129-3135, 2005.
[104] Robert G. Hunsperger, Integrated Optics, 6th ed. New York: Springer Science+Business Media, 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64099-
dc.description.abstract近年來由於兆赫波科技的快速發展,許多兆赫波發射器被廣泛地開發,其中包括共振穿隧二極體、光導天線、單傳輸載子光二極體、傳輸波光偵測式兆赫波光子發射器、兆赫波量子級聯雷射、磷化銦高電子傳輸電晶體及異質介面偶極電晶體等等。而作為一個兆赫波發射源,其效率及指向性在一些特殊應用裡尤為重要。例如,手持式兆赫波探測頭必須擁有較高的輻射指向性,以便在即時偵測時得到較高的訊雜比及解析度;在生物檢測晶片應用裡,激發能量必須加以限制以避免對待測樣本加熱造成影響。因此,一個高效率的兆赫波源(意指低功率消耗)在這類的應用裡也扮演著一個不可或缺的角色。在本論文中,我們提出並且實驗證明兩式依垛行開槽陣列天線為設計基礎的兆赫波光子偵測器。實驗過程中,我們不需使用任何高藉電係數的聚焦媒介便可輕易得到高指向性的兆赫波輻射。在0.9兆赫的輻射場型中,不論在電場或磁場平面,其3dB束寬都可以被有效地侷限在30度輻射角以內。此外,我們將光電路重新設計在一接地共平面波導結構上以便提升其輻射效率及高頻操作。此新設計的優點在於能夠保有厚基板,在適當的設計下,基板能夠收集儲存散逸在電路表面及基板內的兆赫波並且形成有效共振,對於提升輻射效率及高頻操作有其顯著的效果,亦有利於未來的大尺寸光電積體電路整合。除了單頻操作,我們亦利用超短脈衝光作為寬頻兆赫波的激發。利用相位偵測的技術,我們成功觀測兆赫波在光子發射器上的傳播、共振及輻射行為,其特性與原始電路設計有著相當高度的吻合,因此,我們相信所發展的高效率及高指向性的兆赫波發射器將非常適合可做為一顆低功率消耗�高敏感度生物檢測晶片,其中代測物之高頻電性可藉由精密兆赫波電路做更進一步的相位檢測。
除了上述高效率及高指向性兆赫波光子發射器之開發,在本論文中,我們也成功建立一套光纖化兆赫波同調控制系統作為兆赫波光子激發系統。我們知道環境對於兆赫波有強烈的吸收及散射影響,因此將兆赫波資訊載於光訊號上是未來發展兆赫波技術的一個重要方式之一。光纖化傳播除了有利於實現一套簡易可撓手持式或桌上型系統,對於未來的長程光纖通訊,所建立的光纖化兆赫波同調控制系統亦可提供其技術支援。本論文中,我們使用的是一根大面積模態光子晶體光纖。實驗結果顯示其頻率範圍可成功地由0.15兆赫線性調至約3.7兆赫。因此,我們希望藉由結合所發展之高效率高指向性兆赫波光子發射器以及簡易可撓式光纖化兆赫波同調控制系統,未來能夠提供更廣泛的兆赫波科技應用。
zh_TW
dc.description.abstractMany Terahertz (THz) radiation devices have been created for the reason of upcoming THz applications, e.g., resonant-tunneling diodes (RTDs), photoconductive (PC) switch antennas, uni-traveling-carrier photodiodes (UTC-PDs), traveling-wave photodetector-(TWPD) based photonic transmitters, THz quantum cascade lasers, InP-based high electron mobility transistors and heterojunction bipolar transistors etc. As a THz radiation source, its directivity and efficiency should be of great concern for specific purposes. For instance, a handheld THz probe head needs a highly concentrated THz beam to enhance the sensitivity of instant detections. Low excitation power is critical for on-chip biosensing due to the thermal effects. A highly efficient THz source for such an application is thus eagerly desired. In this dissertation, we have proposed to use the rampart slot array antenna design to achieve highly directional THz radiation patterns without any focusing medium. A 3dB beam width less than 30° in both E and H planes at ~0.9THz was demonstrated by exciting single radiation source. To enhance radiation efficiency and high-frequency performances, we modified the circuit design of the THz photonic transmitter where a grounded coplanar waveguide structure was utilized to collect more resonating waves in the substrate. Besides, a broadband THz excitation was also performed to study the on-chip THz wave propagation, resonance, and radiation phenomena. The good agreement of circuit design and THz wave characteristics shows a great potentiality for the present circuit to be utilized as an on-chip detection device, where phase-sensitive detection could be realized.
We also proposed a fiber-based coherent control system for THz photonic generation. For handheld devices or tabletop systems, combination with an optical fiber is a promising way to save the THz information from environmental disturbances. Long-range communication relies on a fiber-optic communication system as well. Here we utilized a large-mode-area photonic crystal fiber to realize a neat tunable narrow-band THz excitation system with lower hardware cost and higher flexibility. The tunable range was demonstrated from 0.15 to ~3.7 THz. In the future applications, we are convinced that a high-efficiency/low power consuming THz system could benefit from our newly proposed device design and neat THz excitation system.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:29:57Z (GMT). No. of bitstreams: 1
ntu-101-F94941015-1.pdf: 4763973 bytes, checksum: 03cc7c9469d35fd7d1c29b709e5df2e5 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 #
致謝 i
中文摘要 iii
Abstract v
Contents vii
List of Figures x
List of Tables xvi
Chapter 1 Introduction 1
Chapter 2 Overview of THz photonic transmitters and methods 4
2.1 THz photonic transmitting devices 4
2.1.1 Antenna-integrated uni-traveling-carrier photodiodes 5
2.1.2 Photoconductive switch antennas 6
2.1.3 THz photonic transmitters 7
2.1.4 Resonant-tunneling diodes 9
2.1.5 InP-based high electron mobility transistors and heterojunction bipolar transistors 10
2.1.6 THz quantum cascade lasers 11
2.2 THz photonic generation methods 12
2.2.1 Optical heterdying of CW light 13
2.2.2 Quasi-CW pulse-shaping techniques 15
Chapter 3 Highly directional THz photonic transmitters 24
3.1 Design of the highly directional THz photonic transmitter 25
3.2 Fabrication of the highly directional THz photonic transmitter 30
3.2.1 Sample introduction 30
3.2.2 Fabrication process 31
3.3 Characteristics of the highly directional THz photonic transmitter 39
3.3.1 Experimental method and setup 39
3.3.2 The characteristics of THz photonic transmitters 42
3.3.3 The radiation patterns of THz photonic transmitters 43
Chapter 4 THz photonic transmitters based on a grounded coplanar waveguide structure 47
4.1 Design of the THz photonic transmitter on a GCPW structure 48
4.1.1 THz antenna: 2D open-ended rampart slot array antenna 48
4.1.2 GCPW for THz reradiation 50
4.1.3 Frequency response of the newly designed THz photonic transmitter 50
4.2 Fabrication of the THz photonic transmitter 52
4.3 Characteristics of THz waves on the THz photonic transmitter 54
4.3.1 Experimental setup 55
4.3.2 Radiations from THz photonic transmitters 57
4.3.3 Time-frequency analysis of the radiated THz waves 59
4.3.4 Bias dependence of the radiated THz power 62
Chapter 5 Fiber-based THz coherent control system 65
5.1 Fiber-based coherent control system 66
5.1.1 Large-mode-area photonic crystal fiber (LMA-PCF) 66
5.1.2 Michelson interferometer 69
5.1.3 Discussions 70
5.1.4 Autocorrelation measurements 72
5.2 Demonstration of the fiber-based coherent control system 82
5.2.1 Photoconductive switch antenna (PC antenna) 82
5.2.2 Measurements of THz radiations 85
Chapter 6 Conclusions 88
6.1 Summary 88
6.2 Future works 89
REFERENCES 92
Appendix: Reprinted Permissions 106
dc.language.isoen
dc.title高指向性及高效率兆赫波光子發射器之開發zh_TW
dc.titleDevelopment of Highly Directional and Efficient THz Photonic Transmittersen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee吳瑞北(Ruey-Beei Wu),綦振瀛(Jen-Inn Chyi),許晉瑋(Jin-Wei Shi),陳士元(Shih-Yuan Chen)
dc.subject.keyword兆赫波光子發射器,垛形開槽陣列天線,共平面波導,光電積體電路,光纖,zh_TW
dc.subject.keywordterahertz photonic transmitter,rampart slot array antenna,coplanar waveguide,optoelectronic integrated circuits,optical fiber,en
dc.relation.page123
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
4.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved