Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64095
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻
dc.contributor.authorTsung-Yu Hsiehen
dc.contributor.author謝宗佑zh_TW
dc.date.accessioned2021-06-16T17:29:47Z-
dc.date.available2012-08-22
dc.date.copyright2012-08-22
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citation1. Gimble, J. M. (2003) Adipose tissue-derived therapeutics, Expert Opin Biol Th 3, 705-713.
2. Wolbank, S., van Griensven, M., Grillari-Voglauer, R., and Peterbauer-Scherb, A. (2010) Alternative Sources of Adult Stem Cells: Human Amniotic Membrane, Adv Biochem Eng Biot 123, 1-27.
3. Psaltis, P. J., Zannettino, A. C. W., Worthley, S. G., and Gronthos, S. (2008) Concise review: Mesenchymal stromal cells: Potential for cardiovascular repair, Stem Cells 26, 2201-2210.
4. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., and Hedrick, M. H. (2001) Multilineage cells from human adipose tissue: Implications for cell-based therapies, Tissue Eng 7, 211-228.
5. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R. (1999) Multilineage potential of adult human mesenchymal stem cells, Science 284, 143-147.
6. Rickard, D. J., Kassem, M., Hefferan, T. E., Sarkar, G., Spelsberg, T. C., and Riggs, B. L. (1996) Isolation and characterization of osteoblast precursor cells from human bone marrow, J Bone Miner Res 11, 312-324.
7. Bray, G. A. (2004) Medical consequences of obesity, J Clin Endocr Metab 89, 2583-2589.
8. Katz, A. J., Llull, R., Hedrick, M. H., and Futrell, J. W. (1999) Emerging approaches to the tissue engineering of fat, Clin Plast Surg 26, 587-+.
9. Bunnell, B. A., Flaat, M., Gagliardi, C., Patel, B., and Ripoll, C. (2008) Adipose-derived stem cells: Isolation, expansion and differentiation, Methods 45, 115-120.
10. Casteilla, L., Planat-Benard, V., Cousin, B., Silvestre, J. S., Laharrague, P., Charriere, G., Carriere, A., and Penicaud, L. (2005) Plasticity of adipose tissue: a promising therapeutic avenue in the treatment of cardiovascular and blood diseases?, Arch Mal Coeur Vaiss 98, 922-926.
11. Oedayrajsingh-Varma, M. J., van Ham, S. M., Knippenberg, M., Helder, M. N., Klein-Nulend, J., Schouten, T. E., Ritt, M. J. P. F., and van Milligen, F. J. (2006) Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure, Cytotherapy 8, 166-177.
12. Gomillion, C. T., and Burg, K. J. L. (2006) Stem cells and adipose tissue engineering, Biomaterials 27, 6052-6063.
13. Wu, Y. J., Chen, L., Scott, P. G., and Tredget, E. E. (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis, Stem Cells 25, 2648-2659.
14. Rehman, J., Traktuev, D., Li, J. L., Merfeld-Clauss, S., Temm-Grove, C. J., Bovenkerk, J. E., Pell, C. L., Johnstone, B. H., Considine, R. V., and March, K. L. (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells, Circulation 109, 1292-1298.
15. Kim, W. S., Park, B. S., Sung, J. H., Yang, J. M., Park, S. B., Kwak, S. J., and Park, J. S. (2007) Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts, J Dermatol Sci 48, 15-24.
16. Brunner, G., and Blakytny, R. (2004) Extracellular regulation of TGF-beta activity in wound repair: growth factor latency as a sensor mechanism for injury, Thromb Haemost 92, 253-261.
17. Singer, A. J., and Clark, R. A. F. (1999) Mechanisms of disease - Cutaneous wound healing, New Engl J Med 341, 738-746.
18. Blakytny, R., and Jude, E. (2006) The molecular biology of chronic wounds and delayed healing in diabetes, Diabet Med 23, 594-608.
19. Jeffcoate, W. J., and Harding, K. G. (2003) Diabetic foot ulcers, Lancet 361, 1545-1551.
20. Jude, E. B., and Boulton, A. J. M. (1999) End-stage complications of diabetic neuropathy, Diabetes Rev 7, 395-410.
21. Brem, H., and Tomic-Canic, M. (2007) Cellular and molecular basis of wound healing in diabetes, J Clin Invest 117, 1219-1222.
22. Falanga, V. (2005) Wound healing and its impairment in the diabetic foot, Lancet 366, 1736-1743.
23. Goren, I., Muller, E., Pfeilschifter, J., and Frank, S. (2006) Severely impaired insulin signaling in chronic wounds of diabetic ob/ob mice - A potential role of tumor necrosis factor-alpha, Am J Pathol 168, 765-777.
24. Galkowska, H., Wojewodzka, U., and Olszewski, W. L. (2006) Chemokines, cytokines, and growth factors in keratinocytes and dermal endothelial cells in the margin of chronic diabetic foot ulcers, Wound Repair and Regeneration 14, 558-565.
25. Galiano, R. D., Tepper, O. M., Pelo, C. R., Bhatt, K. A., Callaghan, M., Bastidas, N., Bunting, S., Steinmetz, H. G., and Gurtner, G. C. (2004) Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells, Am J Pathol 164, 1935-1947.
26. Maruyama, K., Asai, J., Li, M., Thorne, T., Losordo, D. W., and D'Amore, P. A. (2007) Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing, Am J Pathol 170, 1178-1191.
27. Gibran, N. S., Jang, Y. C., Isik, F. F., Greenhalgh, D. G., Muffley, L. A., Underwood, R. A., Usui, M. L., Larsen, J., Smith, D. G., Bunnett, N., Ansel, J. C., and Olerud, J. E. (2002) Diminished neuropeptide levels contribute to the impaired cutaneous healing response associated with diabetes mellitus, J Surg Res 108, 122-128.
28. Lobmann, R., Ambrosch, A., Schultz, G., Waldmann, K., Schiweck, S., and Lehnert, H. (2002) Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients, Diabetologia 45, 1011-1016.
29. Le Pillouer-Prost, A. (2003) Fibroblasts: what's new in cellular biology?, J Cosmet Laser Ther 5, 232-238.
30. Lerman, O. Z., Galiano, R. D., Armour, M., Levine, J. P., and Gurtner, G. C. (2003) Cellular dysfunction in the diabetic fibroblast - Impairment in migration, vascular endothelial growth factor production, and response to hypoxia, Am J Pathol 162, 303-312.
31. Lan, C. C. E., Liu, I. H., Fang, A. H., Wen, C. H., and Wu, C. S. (2008) Hyperglycaemic conditions decrease cultured keratinocyte mobility: implications for impaired wound healing in patients with diabetes, Brit J Dermatol 159, 1103-1115.
32. Tepper, O. M., Galiano, R. D., Capla, J. M., Kalka, C., Gagne, P. J., Jacobowitz, G. R., Levine, J. P., and Gurtner, G. C. (2002) Human endothelial progenitor exhibit impaired proliferation, cells from type II diabetics adhesion, and incorporation into vascular structures, Circulation 106, 2781-2786.
33. El-Ftesi, S., Chang, E. I., Longaker, M. T., and Gurtner, G. C. (2009) Aging and Diabetes Impair the Neovascular Potential of Adipose-Derived Stromal Cells, Plast Reconstr Surg 123, 475-485.
34. Shweiki, D., Itin, A., Soffer, D., and Keshet, E. (1992) Vascular Endothelial Growth-Factor Induced by Hypoxia May Mediate Hypoxia-Initiated Angiogenesis, Nature 359, 843-845.
35. Hocevar, B. A., Brown, T. L., and Howe, P. H. (1999) TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway, Embo Journal 18, 1345-1356.
36. Falanga, V., Martin, T. A., Takagi, H., Kirsner, R. S., Helfman, T., Pardes, J., and Ochoa, M. S. (1993) Low-Oxygen Tension Increases Messenger-Rna Levels of Alpha-1 (I) Procollagen in Human Dermal Fibroblasts, J Cell Physiol 157, 408-412.
37. Jeong, H. J., Hong, S. H., Park, R. K., Shin, T., An, N. H., and Kim, H. M. (2005) Hypoxia-induced IL-6 production is associated with activation, of MAP kinase, HIF-1, and NF-kappa B on HEI-OC1 cells, Hearing Res 207, 59-67.
38. Cramer, C., Freisinger, E., Jones, R. K., Slakey, D. P., Dupin, C. L., Newsome, E. R., Alt, E. U., and Izadpanah, R. (2010) Persistent High Glucose Concentrations Alter the Regenerative Potential of Mesenchymal Stem Cells, Stem Cells Dev 19, 1875-1884.
39. Stolzing, A., Coleman, N., and Scutt, A. (2006) Glucose-induced replicative senescence in mesenchymal stem cells, Rejuv Res 9, 31-35.
40. Thangarajah, H., Yao, D. C., Chang, E. I., Shi, Y. B., Jazayeri, L., Vial, I. N., Galiano, R. D., Du, X. L., Grogan, R., Galvez, M. G., Januszyk, M., Brownlee, M., and Gurtner, G. C. (2009) The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues, P Natl Acad Sci USA 106, 13505-13510.
41. Turturro, F., Friday, E., and Welbourne, T. (2007) Hyperglycemia regulates thioredoxin-ROS activity through induction of thioredoxin-interacting protein (TXNIP) in metastatic breast cancer-derived cells MDA-MB-231, Bmc Cancer 7.
42. Brownlee, M. (2001) Biochemistry and molecular cell biology of diabetic complications, Nature 414, 813-820.
43. Ishizuka, T., Hinata, T., and Watanabe, Y. (2011) Superoxide induced by a high-glucose concentration attenuates production of angiogenic growth factors in hypoxic mouse mesenchymal stem cells, J Endocrinol 208, 147-159.
44. Yao, D. C., and Brownlee, M. (2010) Hyperglycemia-Induced Reactive Oxygen Species Increase Expression of the Receptor for Advanced Glycation End Products (RAGE) and RAGE Ligands, Diabetes 59, 249-255.
45. Cosentino, F., Eto, M., De Paolis, P., van der Loo, B., Bachschmid, M., Ullrich, V., Kouroedov, A., Gatti, C. D., Joch, H., Volpe, M., and Luscher, T. F. (2003) High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells - Role of protein kinase C and reactive oxygen species, Circulation 107, 1017-1023.
46. Lo, T., Ho, J. H., Yang, M. H., and Lee, O. K. (2011) Glucose Reduction Prevents Replicative Senescence and Increases Mitochondrial Respiration in Human Mesenchymal Stem Cells, Cell Transplant 20, 813-825.
47. Li, Y. Y., and Tollefsbol, T. O. (2011) p16(INK4a) Suppression by Glucose Restriction Contributes to Human Cellular Lifespan Extension through SIRT1-Mediated Epigenetic and Genetic Mechanisms, Plos One 6.
48. Li, Y. Y., Liu, L., and Tollefsbol, T. O. (2010) Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression, Faseb Journal 24, 1442-1453.
49. Rosova, I., Dao, M., Capoccia, B., Link, D., and Nolta, J. A. (2008) Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells, Stem Cells 26, 2173-2182.
50. Khan, M., Akhtar, S., Mohsin, S., Khan, S. N., and Riazuddin, S. (2011) Growth Factor Preconditioning Increases the Function of Diabetes-Impaired Mesenchymal Stem Cells, Stem Cells Dev 20, 67-75.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64095-
dc.description.abstract脂肪幹細胞應用於皮膚以及傷口的修復已有可觀的成效,因此,對於面臨傷口延遲癒合問題的糖尿病人來說,自體脂肪幹細胞的移植成為一種可行的治療方式。 然而很多研究指出,長期的高血糖狀態會造成許多器官,以及細胞的功能受到損害。 因此,得自糖尿病人的脂肪幹細胞是否適合醫療應用,逐漸地受到關注。 我們使用一個體外的模型來探討長期培養下,培養液中的葡萄糖濃度對脂肪幹細胞細的胞功能之影響。 藉此我們可以簡化與脂肪幹細胞受損有關的因素,並且更專注於高血糖所帶來的結果。
我們發現,高濃度葡萄糖的培養環境會誘使脂肪幹細胞的細胞老化;抑制細胞生長、細胞遷移能力、細胞存活率,以及對於低氧狀態的反應能力。 為了更進一步的探討這些細胞功能的受損是否是可逆的,我們將培養於高葡萄糖環境下脂肪幹細胞轉移至低葡萄糖濃度下培養。 而我們發現,這些細胞的細胞活性有顯著的回復。 總結來說,實驗結果顯示低葡萄糖濃度的處理,能夠增進受到高葡萄糖濃度損害的脂肪幹細胞的細胞活性。
zh_TW
dc.description.abstractAdipose-derived stem cells (ASCs) have been used in skin and wound repair with satisfactory results, therefore, autologous transplantation of ASCs becomes a treatment option for diabetes patients who facing the problem of delayed wound healing. However, many reports revealed that prolonged hyperglycemia damaged several organs and functions of many cell types, thus raised a concern that whether ASCs from diabetes patients suitable for medical applications. To simplify the factors involved in impaired ASCs activity and to concentrate on the results of hyperglycemia, we provided an in vitro model to investigate the effect of culture medium glucose concentration on ASCs functions during long-term culture.
We found induced cell senescence, decreased cell proliferation, migration, survival rate and response to hypoxia were displayed in ASC under high glucose condition. To further study whether these dysfunction were reversible, ASCs cultured under high glucose condition were then changed into low-glucose medium, and a significant recovery of cellular activities was observed. Collectively, these data suggested that low-glucose treatment improves the functions of ASCs impaired by high glucose concentration.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:29:47Z (GMT). No. of bitstreams: 1
ntu-101-R99548010-1.pdf: 11435461 bytes, checksum: cd7d099f00ffe6de913d4faa69fb4f28 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents I
Figures III
中文摘要 IV
Abstract V
Chapter 1. Introduction 1
1-2 ASCs in applications to wound reparation 3
1-3 Chronic wounds and delayed healing in diabetes 4
1-4 Cellular dysfunction due to hyperglycemia 7
1-5 Hypothesis and design of experiment 8
Chapter 2. Materials and Methods 9
2-1 Cell Culture 9
2-2 Long-term treatment of ASCs with high/low glucose 10
2-3 CD markers detection 11
2-4 Differentiation of ASCs 12
2-5 Cell proliferation 13
2-6 Cell cycle analysis 14
2-7 SA-β-Galactosidase activity staining 15
2-8 ASCs migration 15
2-9 Cell survival 16
2-10 Real-time quantitative polymerase chainreaction (qPCR) 17
2-11 Western blot 19
2-12 Statistical Analysis 20
Chapter 3. Results 21
3-1 ASCs expansion and characterization 21
3-1 Effect of glucose on ASCs proliferation 23
3-3 Effect of glucose on ASC senescence 25
3-4 Effect of glucose on the expression of pluripotent marker genes 26
3-5 Effect of glucose on ASCs migration ability 27
3-6 Effect of glucose on ASCs survival 28
3-7 Effect of glucose on ASCs paracrine and response to hypoxia 29
Chapter 4. Discussion 31
Chapter 5. Conclusion 35
References 36
Figure 41
Fig. I. Scheme for processing of adipose tissue and isolation of adipose-derived stem cells 3
Fig. II. Overview of growth factor involvement in normal epidermal wound healing 5
Fig. III. Stages of wound repair 5
Fig. IV. Mechanisms of wound healing in healthy people versus people with diabetes 6
Fig. 1. Surface antigen analysis of ASCs after cultured 49 days under high glucose 41
Fig. 2. Phase contract photograph of adipogenesis and osteogenesis of ASCs. 43
Fig. 3. Morphology of ASCs 44
Fig. 4. Cell proliferation of ASCs 45
Fig. 5. Analysis of ASCs senescence. 47
Fig. 6. The expression of p21. 48
Fig. 7. The protein expression of pluripotent-related transcriptional factors 49
Fig. 8. Cell migration of ASCs was measured by in vitro scratch assay 50
Fig. 9. Survival rate of ASCs was determined by LDH assay. 51
Fig. 10. Analysis of ASCs paracrine and ECM production activity response to hypoxia. 52
dc.language.isoen
dc.subject傷口修復zh_TW
dc.subject低氧狀態zh_TW
dc.subject脂肪幹細胞zh_TW
dc.subject葡萄糖zh_TW
dc.subjectGlucoseen
dc.subjectAdipose-derived stem cellsen
dc.subjectHypoxiaen
dc.subjectWound Healingen
dc.title低葡萄糖濃度處理以增進受損之脂肪幹細胞活性之研究zh_TW
dc.titletudy of the Improvement of Impaired Adipose-derived Stem Cells Activities by Low-glucoseen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李弘元,胡威文
dc.subject.keyword脂肪幹細胞,葡萄糖,低氧狀態,傷口修復,zh_TW
dc.subject.keywordAdipose-derived stem cells,Glucose,Hypoxia,Wound Healing,en
dc.relation.page53
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
11.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved