請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64093完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張孟基 | |
| dc.contributor.author | Tzu-Yi Yang | en |
| dc.contributor.author | 楊子儀 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:29:42Z | - |
| dc.date.available | 2017-08-20 | |
| dc.date.copyright | 2012-08-20 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | Åkerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nature Reviews Molecular Cell Biology 11: 545-555
Al-Whaibi MH (2011) Plant heat-shock proteins: a mini review. Journal of King Saud University - Science 23: 139-150 Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Science 171: 382-388 Baniwal SK, Bhartl K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf K-D, Tripp J, Weber C, Zielinski D, Von Koskull-Döring P (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. Journal of Biosciences 29: 471-487 Becker J, Craig EA (1994) Heat-shock proteins as molecular chaperones. European Journal of Biochemistry 219: 11-23 Blanco-Rivero MC, Takabe T, Viale AM (2005) Functional differences between cyanobacterial DnaK1 chaperones from the halophyte Aphanothece halophytica and the freshwater species Synechococcus elongatus expressed in Escherichia coli. Current Microbiology 51: 164-170 Campbell WH, Gowri G (1990) Codon usage in higher plants, green algae, and cyanobacteria. Plant Physiology 92: 1-11 Cardoso K, Gandra RF, Wisniewski ES, Osaku CA, Kadowaki MK, Felipach-Neto V, Haus LFAA, Simao RdCG (2010) DnaK and GroEL are induced in response to antibiotic and heat shock in Acinetobacter baumannii. Journal of Medical Microbiology 59: 1061-1068 Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D'Ordine R, Navarro S, Back S, Fernandes M, Targolli J, Dasgupta S, Bonin C, Luethy MH, Heard JE (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved frain yield in Maize under water-limited conditions. Plant Physiology 147: 446-455 Chang L, Thompson AD, Ung P, Carlson HA, Gestwicki JE (2010) Mutagenesis reveals the complex relationships between ATPase rate and the chaperone activities of Escherichia coli heat shock protein 70 (Hsp70/DnaK). Journal of Biological Chemistry 285: 21282-21291 Cheetham ME, Caplan AJ (1998) Structure, functin and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress and Chaperones 3: 28-36 Chen MY (2002) Meiothermus taiwanensis sp. nov., a novel filamentous, thermophilic species isolated in Taiwan. International Journal of Systematic and Evolutionary Microbiology 52: 1647-1654 Chow K-C, Tung WL (1998) Overexpression of dnaK/dnaJ and groEL confers freeze tolerance to Escherichia coli. Biochemical and Biophysical Research Communications 253: 502-505 Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. Murray, John, London Davis AM, Hall A, Millar AJ, Darrah C, Davis SJ (2009) Protocol: Streamlined sub-protocols for floral-dip transformation and selection of transformants in Arabidopsis thaliana. In Plant Methods, Vol 5 Desai PN, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants: Strategies for optimal expression. Biotechnology Advances 28: 427-435 Ellis RJ (1987) Proteins as molecular chaperones. Nature 328: 378-379 Ellis RJ (1990) Molecular chaperones: the plant connection. Science 250: 954-959 Ellis RJ (2007) Protein misassembly: macromolecular crowding and molecular chaperones. Advances in Experimental Medicine and Biology 594: 1-13 Ellis RJ, Hemmingsen SM (1989) Molecular chaperones: proteins essential for the biogenesis of some macromolecular structure. Trends in Biochemical Sciences 14: 339-342 Ellis RJ, Minton AP (2006) Protein aggregation in crowded environments. Biological Chemistry 387: 485-497 Ellis RJ, van der Vies SM (1991) Molecular chaperones. Annual Review of Biochemistry 60: 321-347 Evans CG, Chang L, Gestwicki JE (2010) Heat Shock Protein 70 (Hsp70) as an Emerging Drug Target. Journal of Medicinal Chemistry 53: 4585-4602 Flaherty KM, DeLuca-Flaherty C, McKay DB (1990) Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346: 623-628 Gade N, Mahapatra RK, Sonawane A, Singh VK, Doreswamy R, Saini M (2010) Molecular Characterization of Heat Shock Protein 70-1 Gene of Goat (Capra hircus). Molecular Biology International 2010: 1-7 Gamer J, Bujard H, Bukau B (1992) Physical interaction between heat shock DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32. Cell 69: 833-842 Gatenby AA, Ellis RJ (1990) Chaperone function: the assembly of ribulose bisphophate carboxylase oxygenase. Annual Review of Cell Biology 6: 125-149 Genevaux P, Keppel F, Schwager F, Langendijk-Genevaux PS, Hartl FU, Georgopoulos C (2004) In vivo analysis of the overlapping functions of DnaK and trigger factor. EMBO reports 5: 195-200 Gragerov A, Nudler e, Komissarova N, Gaitanaris GA, Gottesman ME, Nikiforov V (1992) Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proceedings of the National Academy of Sciences 89: 10341-12344 Grosjean H, Fiers W (1982) Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18: 199-209 Gurley WB (2000) HSP101: a key component for the acquisition of thermotolerance in plants. The Plant Cell 12: 457-446 Guy CL, Li Q-B (1998) The organizaiton and evolution of the spinach stress 70 molecular chaperone gene family. The Plant Cell 10: 539-556 Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proceedings of the National Academy of Sciences 103: 14288-14293 Harrison C (1997) Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276: 431-435 Harrison C (2003) GrpE, a nucleotide exchange factorfor DnaK. Cell Stress and Chaperones 8: 218-224 Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381: 571-579 Henderson B (2009) Heat shock proteins are mediatorsof bacterial-host interactions. In AG Pockley, SK Calderwood, MG Santoro, eds, Prokaryotic and eukaryotic heat shock proteins in infectious disease heat shock proteins, Vol 4. Springer Netherlands, pp 185-209 Hendrick JP, Hartl F-U (1993) Molecular chaperone functions of heat-shock proteins. Annual Review of Biochemistry 62: 349-384 Hibino T, Kaku N, Yoshikawa H, Takabe T, Takabe T (1999) Molecular characterization of DnaK from the halotolerant cyanobacterium Aphanothece halophytica for ATPase, protein folding, and copper binding under various salinity conditions. Plant Molecular Biology 40: 409-418 Hong SW, Lee U, Vierling E (2003) Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiology 132: 757-767 Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T, Takabe T (2000) Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Molecular Biology 43: 103–111 Hu X, Liu R, Li Y, Wang W, Tai F, Xue R, Li C (2009) Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regulation 60: 225-235 Janakiraman A, Fixen KR, Gray AN, Niki H, Goldberg MB (2009) A genome-scale proteomic screen identifies a role for DnaK in chaperoning of polar autotransporters in Shigella. Journal of Bacteriology 191: 6300-6311 Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany 58: 3591-3607 Karlin S, Brocchieri L (1998) Heat shock protein 70 family: multiple sequence comparisons, function, and evolution. Journal of Molecular Evolution 47: 565-577 Karzai AW, McMacken R (1996) A bipartite signaling mechanism involved in DnaJ-mediated activation of the Escherichia coli DnaK protein. The Journal of Biological Chemistry 271: 11236-11246 Kimura Y, Yahara I, Lindquist S (1995) Role of the protein chaperone YDJ1 in establishing Hsp90-mediated signal tansduction pathways. Science 268: 1362-1365 Kurzik-Dumke U, Schick C, Rzepka R, Melchers I (1999) Overxpression of human homologs of the bactrial DnaJ chaperone in the synovial tissue of patients with rhematoid arthritis. Arthritis and Rheumatism 42: 210-220 Langer T, Lu C, Echols H, Flanagan J, Hayer MK, Hartl FU (1992) Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356: 683-689 Laskey RA, Honda BM, Mills AD, Finch JT (1978) Nucelosomes are assembles by an acidic protein which binds histones and transfer them to DNA. Nature 275: 416-420 Lee BH, Hibino T, Jo J, Viale AM, Takabe T (1997) Isolation and characterization of a dnaK genomic locus in a halotolerant cyanobacterium Aphanothece halophytica. Plant Molecular Biology 35: 763-775 Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiology 122: 189-197 Li CY, Lee JS, Ko YG, kim JI, Seo JS (2000) Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. Journal of Biological Chemistry 275: 25665-25671 Li GL, Chang H, Li B, Zhou W, Sun DY, Zhou RG (2007) The roles of the atDjA2 and atDjA3 molecular chaperone proteins in improving thermotolerance of Arabidopsis thaliana seedlings. Plant Science 173: 408-416 Lindquist S, Craig EA (1988) The heat-shock proteins. Annual Review of Genetics 22: 631-677 Liu X, Huang B (2000) Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Science 40: 503-510 Luke MM, Sutton A, Arndt KT (1991) Characterization fo SIS1, a Saccharomyces cerevisiae homologue of bacterial DnaJ proteins. The Journal of Cell Biology 114: 623-638 Malthus TR (1798) An essay on the principle of population. Penguin Classics, London Martin J, Hartl FU (1997) The effect of macromolecular crowding on chaperonin-mediated protein folding. Proceedings of the National Academy of Sciences 94: 1107-1112 Mayr B, Kaplan T, Lechner S, Scherer S (1996) Identificaiton and purification of a family of dimeric mayor cold shock protein homologs from the psychrotrophic Bacillus cereus WSBC 10201. Journal of Bacteriology 178: 2916-2925 Misra G, Ramachandran R (2009) Hsp70-1 from Plasmodium falciparum: protein stability, domain analysis and chaperone activity. Biophysical Chemistry 142: 55-64 Mullarkey M, Jones P (2000) Isolation and analysis of thermotolerant mutants of wheat. Journal of Experimental Botany 51: 139-146 Multhoff G (2009) Activation of natural killer cells by heat shock protein 70. International Journal of Hyperthermia 25: 169-175 Nover L, Scharf K-D, Gagliardi D, Vergne P, Czarnecka-Verner E, Gurley WB (1996) The Hsf world: classificaiton and properties of plant heat stress transcription factors. Cell Stress and Chaperones 1: 215-223 Ono K, Hibino T, Kohinata T, Suzuki S, Tanaka Y, Nakamura T, Takabe T (2001) Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances the high-temperatue tolerance of tobacco during germination and early growth. Plant Science 160: 455-461 Pelham HRB (1986) Speculation on the funcitons of the major heat shock and glucose-regulated proteins. Cell 46: 959-961 Peng S, Huang J, Sheehy JE, Laza RC, Bisperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences 101: 9971-9975 Qian YQ, Patel D, Hartl FU, McColl DJ (1996) Nuclear magnetic resonance solution struciton of the human Hsp40 (HDJ-1) J-doman. Journal of Molecular Biology 260: 224-235 Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. The Plant Cell 12: 479-492 Rajan VBV, D’Silva P (2009) Arabidopsis thaliana J-class heat shock proteins: cellular stress sensors. Functional & Integrative Genomics 9: 433-446 Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. cellular and Molecular Life Sciences 18: 571-573 Ritossa F (1964) Experimental activation of specific loci in polytene chromosomes of Drosophila. Experimental Cell Research 35: 601-607 Ritossa F (1996) Discovery of the heat shock response. Cell Stress and Chaperones 1: 97-98 Sakthivel K, Watanabe T, Nakamoto H (2009) A small heat-shock protein confers stress tolerance and stabilizes thylakoid membrane proteins in cyanobacteria under oxidative stress. Archives of Microbiology 191: 319-328 Schlenstedt G, Harris S, Risse B, Lill R, Silver PA (1995) A yeast DnaJ homoloaue, Scj1p, can function in the endoplasmic reticulum with BiP/Dar2P via a conserved domain that specifies interactions with Hsp70s. The Journal of Cell Biology 129: 979-988 Schlesinger MJ (1990) Heat shock proteins. The Journal of Biological Chemistry 265: 12111-12114 Sharma D, Masison DC (2009) Hsp70 structure, function, regulation and influence on Yeast prions. Protein and Peptide Letters 16: 571-581 Sherman MY, Goldberg AL (1992) Involvement of the chapernin dnaK in the rapid degradation of a mutant protein in Escherichia coli. The EMBO Journal 11: 71-77 Silver PA, Way JC (1993) Eukaryotic DnaJ homologs and the specificity of Hsp70 activity Cell 74: 5-6 Singh A, Singh U, Mittal D, Grover A (2010) Genome-wide analysis of rice ClpB/HSP100, ClpC and ClpD genes. In BMC Genomics, Vol 11 Skowyra D, Georgopoulos C, Zylicz M (1990) The E. coli dnaK gene product, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner. Cell 62: 939-944 Smith DWE (1996) Problems of translating heterologous genes in expression systems: the role of tRNA. Biotechnology Progress 12: 417-422 Soto A, Allona I, Collada C, Guevara M-A, Casado R, Rodrigurx-Cerezo E, Aragoncillo C, Gomez L (1999) Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiology 120: 521-528 Su PH, Li HM (2008) Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiology 146: 1231-1241 Su PH, Li HM (2010) Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. The Plant Cell 22: 1516-1531 Sugino M, Hibino T, Tanaka Y, Nii N, Takabe T (1999) Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica acquires resistance to salt stress in transgenic tobacco plants. Plant Science 146: 81-88 Takabe T, Uchida A, Shinagawa F, Terada Y, Kajita H, Tanaka Y, Takabe T, Hayashi T, Kawai T, Takabe T (2008) Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances growth rate as well as abiotic stress tolerance of poplar plants. Plant Growth Regulation 56: 265-273 Timperio A, Egidi M, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). Journal of Proteomics 71: 391-411 Tissieres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. Journal of Molecular Biology 84: 389-398 Tomoyasu T, Tabata A, Imaki H, Tsuruno K, Miyazaki A, Sonomoto K, Whiley RA, Nagamune H (2011) Role of Streptococcus intermedius DnaK chaperone system in stress tolerance and pathogenicity. Cell Stress and Chaperones 17: 41-55 Uchida A, Hibino T, Shimada T, Saigusa M, Takabe T, Araki E, Kajita H, Takabe T (2008) Overexpression of DnaK chaperone from a halotolerant cyanobacterium Aphanothece halophytica increases seed yield in rice and tobacco. Plant Biotechnology 25: 141–150 van der Berg B, Ellis RJ, Dobson CM (1999) Effects of macromolecular crowding on protein folding and aggregation. The EMBO Journal 18: 6927-6933 van der Berg B, Wain R, Dobson CM, Ellis RJ (2000) Macromolecular crowding perturbs protein refolding kinetics: implications for folding inside the cell. The EMBO Journal 19: 3870-3875 Wall D, Zylicz M, Georgopoulos C (1994) The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are ssufficient for λ replication. The Journal of Biological Chemistry 269: 5446-5451 Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science 9: 244-252 Wickner SH (1990) Three Escherichia coli heat shock proteins are required for P1 plasmid DNA replicaiton: formaiton of an active complex between E. coli dnaJ protein and the P1 initiator protein. Proceedings of the National Academy of Sciences 87: 2690-2694 Wild J, Altman E, Yura T, Gross CA (1992) DnaK and DnaJ heat shock proteins participate in protein export in Escherichia coli. Genes & Development 6: 1165-1172 Wu CH, Caspar T, Browse J, Lindquist S, Somerville C (1988) Characterization of an HSP70 cognate gene family in Arabidopsis. Plant Physiology 88: 731-740 Xue Y, Peng R, Xiong A, Li X, Zha D, Yao Q (2009) Yeast heat-shock protein gene HSP26 enhances freezing tolerance in Arabidopsis. Journal of Plant Physiology 166: 844-850 Yébenes H, Mesa P, Muñoz IG, Montoya G, Valpuesta JM (2011) Chaperonins: two rings for folding. Trends in Biochemical Sciences 36: 424-432 Zhang XP, Elofsson A, Andreu D, Glaser E (1999) Interaction of mitochondrial presequences with DnaK and mitochondrial hsp70. Journal of Molecular Biology 288: 177-190 Zhang XP, Glaser E (2002) Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone. Trends in Plant Science 7: 14-21 Zhao Z, Zhang W, Yan J, Zhang J, Liu Z, Li X, Yang Y (2010) Over-expression of Arabidopsis DnaJ (Hsp40) contributes to NaCl-stress tolerance. African Journal of Biotechnology 9: 972-978 Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman ME, Hendrickson WA (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272: 1606-1614 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64093 | - |
| dc.description.abstract | 氣候變遷導致非生物逆境嚴重影響作物的生長及產量。其中為提升作物的逆境耐受性,在轉殖基礎應用上有用基因之發掘及利用益形重要。目前極端環境下生長之生物,如耐高溫或鹽鹵的溫泉菌其分子伴蛋白系統相關基因的應用即為研究熱點。分子伴蛋白(molecular chaperone)系統由DnaJ (Hsp40)-DnaK (Hsp70)-GrpE (NEF)構成,主要功能可避免變性蛋白凝集沉澱,協助展開多肽鏈回復正常摺疊及功能構形,進而維持細胞內蛋白質恆定。過去已有將原核或真核熱休克蛋白各自大量表現於大腸桿菌或植物以增進其對不同非生物性逆境耐性之先例。本研究主要將臺灣温泉亞嗜熱菌(Meiothermus taiwanesis)的MtDnaJ及MtDnaK以CaMV 35S啟動子或T7啟動子分別大量表現於阿拉伯芥或大腸桿菌中以分析MtDnaJ及MtDnaK是否可提升阿拉伯芥及大腸桿菌對熱逆境及其他不同非生物逆境耐受性。首先,將溫泉菌MtDnaJ及MtDnaK與其他生物之熱休克蛋白進行演化樹親緣分析及蛋白質序列比對,發現不同物種的熱休克蛋白確實有高度保守性,可能具有相似之生理性狀。其次,進行不同逆境下阿拉伯芥轉殖株的外表型耐受性評估。結果發現絕大部分品系在熱休克處理下普遍都具後天獲得熱耐性(acquired thermotolerance)。而在鹽處理下,雜交轉殖株不論是幼苗發芽勢、根長生長勢或是成株試驗存活率都較佳。其中一個大量表現MtDnaJ及MtDnaK蛋白的雜交品系H8表現尤佳,由此推測大量表現雙重熱休克蛋白MtDnaJ及MtDnaK的雜交品系可能因為表達較完整的分子伴蛋白系統功能,所以有較佳耐性表現。另外以大腸桿菌系統測試,發現在一般生長情況下,大量表現MtDnaJ及MtDnaK基因表達融合蛋白的品系有較佳生長趨勢。綜合以上推論,大量表現原核臺灣亞嗜熱菌熱休克蛋白MtDnaJ或MtDnaK,尤其將兩者共同表現於阿拉伯芥可有效提升植株或細菌對非生物逆境如高溫、鹽害及滲透壓逆境的耐受性。 | zh_TW |
| dc.description.abstract | Climate change results in severely abiotic stresses and affects crop growth, development and yields. For the improvement of crop stress tolerance, the stress-tolerant gene mining and applications for transgenic biotechnology application become more important. The extreme environment organism, such as thermotolerance or halophytic hot spring bacteria has been used for its molecular chaperone system related genes to enhance crop stress resistance. The Hsp70 molecular chaperone system is composed of DnaJ (Hsp40)-DnaK (Hsp70)-GrpE (NEF), and the main function is to prevent denatured protein aggregation and precipitation, help the unfold polypeptides refolding and gain the functional composition, and furthermore maintain the protein homeostasis in cells. Previous studies showed that prokaryotes or eukaryotes overexpressing chaperone-related genes could enhance their abiotic stresses tolerance. Thus, in this study we overexpression of Meiothermus taiwanesis MtDnaJ and MtDnaK driven by CaMV 35S promoter or T7 promoter, respectively in Arabidopsis thaliana or Erscherichia coli to test if this strategy could confer the abiotic stresses tolerance in Arabidopsis and E. coli. First, the phylogenic analysis and polypeptides alignment of MtDnaJ/MtDnaK and other organisms showed that indeed these proteins are highly conserved in proteins of various species and may share similar physiological functions. Second, phynotypic analyses of transgenic Arabidopsis under multiple stresses showed that almost all transgenic lines have acquired thermotolerance. On the other hand, under the salt stress, the double cross transformants with MtDnaJ/MtDnaK expressed better phenotype no matter in seed viability, root length, or adult survival rate, especially the MtDnaJ- and MtDnaK- overexpression transformant, H8. This may be due to the establishment of a more complete Hsp70 chaperone system that leads to better gene expression and to confer stress tolerance. In E. coli system, the better growth curve was observed with the overexpression of MtDnaJ and MtDnak fusion gene under normal condition. Combined all the results, the overexpression of prokaryotic Meiothermus taiwanesis MtDnaJ or MtDnaK, especially co-expression of both genes by PCR-fusion, could confer plants with the tolerance of high temperature, salt stress and osmotic stresses. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:29:42Z (GMT). No. of bitstreams: 1 ntu-101-R98621118-1.pdf: 9313921 bytes, checksum: 15a41f922ddd7a3a308ea3fd3f1d2b8c (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 .................................................. I
摘要 .................................................. II Abstract .............................................. III 縮寫字對照表........................................... V 圖表目錄............................................... VIII 第一章、前言 .......................................... 1 1.非生物逆境因氣候變遷加劇,對糧食生產影響重大 ........ 1 2.熱休克蛋白研究起源及介紹 ............................ 4 3.利用DnaK (Hsp70)及DnaJ (Hsp40)進行轉基因植物以增加非生物逆境耐受性的前人研究 .................................... 15 4.本文研究架構及目的 .................................. 16 第二章、材料與方法 .................................... 19 1.溫泉菌MtDnaJ、MtDnaK DNA clone及阿拉伯芥Columbia ecotype、hsp101基因剔除株種子之來源 ............................ 19 2.Meiothermus taiwanesis熱休克蛋白MtDnaJ、MtDnaK和其他物種熱休克蛋白胺基酸序列比對並繪製親緣演化樹 ................ 19 3.阿拉伯芥生長條件及植株非生物逆境耐受性評估 .......... 20 4.大量表現MtDnaJn (pADJn)、MtDnaJc (pADJc)及MtDnaKc (pADKc)之阿拉伯芥轉殖株 ...................................... 21 5.大量表現MtDnaJb (pEDJb)、MtDnaKb (pEDKb)及MtDnaFb(相當於MtDnaJb-MtDnaKb) (pEDFb)的大腸桿菌轉型株 ............. 30 第三章、結果 .......................................... 32 1.溫泉嗜熱菌Meiothermus taiwanesis 熱休克蛋白MtDnaJ、MtDnaK之結構及親緣演化樹分析 ................................ 32 2.大量表現MtDnaJ、MtDnaK及MtDnaJ/MtDnaK阿拉伯芥轉殖株之系統篩選及分子鑑定 ........................................ 34 3.轉殖株幼苗熱逆境耐性檢測 ............................ 35 4.不同時期的轉殖株鹽逆境耐性檢測 ...................... 36 5.阿拉伯芥轉殖株幼苗在mannitol處理下的根部性狀檢測 .... 37 6.大量表現MtDnaJ、MtDnaK及MtDnaJ-MtDnaK之重組蛋白質及生長曲線、菌落大小分析 ...................................... 38 第四章、討論 .......................................... 40 1.阿拉伯芥轉殖效率之討論 .............................. 41 2.探討外源熱休克蛋白基因轉殖策略----從臺灣亞嗜熱菌到阿拉伯芥 .................................................... 42 3.熱休克蛋白大量表現對作物產量影響 .................... 43 參考文獻 .............................................. 45 附錄 .................................................. 53 表..................................................... 53 圖..................................................... 54 附表................................................... 76 附圖................................................... 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 非生物性逆境耐性、分子伴蛋白、熱休克蛋白、溫泉菌、DnaJ、DnaK | zh_TW |
| dc.subject | molecular chaperone | en |
| dc.subject | heat shock protein | en |
| dc.subject | hot-spring bacteria | en |
| dc.subject | DnaJ | en |
| dc.subject | DnaK | en |
| dc.subject | abiotic stress tolerance | en |
| dc.title | 在阿拉伯芥表現嗜熱菌Meiothermus taiwanesis MtDnaJ及MtDnaK對非生物逆境反應之分析 | zh_TW |
| dc.title | Analysis of Thermophilic Meiothermus taiwanesis MtDnaJ and MtDnaK in Arabidopsis in Response to Abiotic Stresses | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪傳揚,侯新龍,靳宗洛,謝旭亮 | |
| dc.subject.keyword | 非生物性逆境耐性、分子伴蛋白、熱休克蛋白、溫泉菌、DnaJ、DnaK, | zh_TW |
| dc.subject.keyword | abiotic stress tolerance, molecular chaperone, heat shock protein, hot-spring bacteria, DnaJ, DnaK, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 9.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
