請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64091完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王立志(Lih - Jih Wang) | |
| dc.contributor.author | TSO-SHIH CHIN | en |
| dc.contributor.author | 金佐蒔 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:29:37Z | - |
| dc.date.available | 2013-01-01 | |
| dc.date.copyright | 2012-08-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-16 | |
| dc.identifier.citation | 上河文化(2004)臺灣高山全覽圖~合歡•奇萊•太魯閣山列。
林務局 (1995) 第三次森林資源調查。共 258 頁。 方江平、項文化、劉韶輝(2010)西藏原始林芝雲杉林雨季林冠降水分配特徵。生態學報。30(14):3679~3687。 王景升、任青山、藍小中(2002)急尖長苞冷杉原始森林降水分配格局。林業科技。27(6):7~10。 古心蘭(1999)合歡山臺灣冷杉永久樣區之植群分析。國立東華大學自然資源管理研究所碩士論文。共 87 頁。 李旻旻(1998)協合遙測與數值地型模型於臺灣冷杉生育地之模擬。國立中興大學森林系碩士論文。共 95 頁。 李振新、歐陽志雲、鄭華、劉興良、宿以明(2006)岷江上游兩種生態系統降雨分配的比較。植物生態學報。30(5):723~731。 林旭宏、賴國祥(1994)合歡山區冷杉林族群動態之研究。臺灣省特有生物研究保育中心研究研究計畫執行成果 (待發表)。 林登秋、夏禹九、金恆鑣(1996)臺灣東北部天然闊葉林林內降雨及林冠截留之研究。14(4):393~400。 金恆鑣、唐凱軍、黃正良、李聖餘(1990)合歡山玉山箭竹草原土壤之發育與分類。太魯閣國家公園管理處。 金恆鑣、唐凱軍、康敏捷、黃正良、李聖餘(1991)合歡山冷杉土壤之發育與分類。太魯閣國家公園管理處。 孫向陽、王根緒、李偉、劉光生、林云(2011)貢嘎山亞高山演替林林冠截留特徵與模擬。水科學進展。22(1):23~29。 康文星、劉湘雯、趙仲輝(2006)林冠截留對杉木人工林生態系統物質循環的影響。林業科學。42(12):1~5。 莊貴瑜(1998)合歡山臺灣冷杉群落樹齡結構與草原推移之研究。國立東華大學自然資源管理研究所碩士論文。共 44 頁。 陳子弘(2006)鴛鴦湖地區台灣扁柏森林幹流水量之估算。國立東華大學自然資源管理研究所碩士論文。共 65 頁。 陳玉鋒(1993)合歡高地植群的演替。東海大學生物學研究所博士論文。共 184頁。 陳信雄(1984)森林水文學。國立編譯館。共 525 頁。 陳榮欽(1996)合歡山區臺灣冷杉林樹齡學之研究。國立中興大學森林系碩士論文。共 78 頁。 陸象豫、唐凱軍(1995)臺灣中部地區天然闊葉林降雨截留量之探討。林業研究所研究報告季刊。10(4):447~457。 葉青峯(2004)臺灣扁柏森林的生物量及雲霧沈降量估算。國立東華大學自然資源管理研究所碩士論文。共 84 頁。 潘家聲(1964)杉木林林分樹冠對於降雨截留量之關係研究。林業研究所研究報告 94 號。 賴彥任、魏聰輝、陳信雄、賴鴻寬(2007)塔塔加地區臺灣雲杉天然林冠層截留與林內降雨之研究。中華水土保持學報。38(2): 135~146。 賴鴻寬(2002)「塔塔加雲杉天然林林內降水之研究。國立臺灣大學森林研究所碩士論文。共 76 頁。 薛建輝、郝奇林、吳永波、劉興良(2008)三種亞高山森林群落林冠截留量及穿透雨量與降雨量的關係。南京林業大學學報(自然科學版)。32(3):9~13。 簡意婷(1998)棲蘭山樣區大氣沈降之 5 年研究。國立東華大學自然資源管理研究所碩士論文。共 74 頁。 魏聰輝、陳信雄、劉維(2009)塔塔加地區臺灣鐵杉天然林截留之研究。中華水土保持學報。40(1):105~111。 黨宏忠、周澤福、趙雨森(2005)青海雲杉林冠截留特徵研究。水土保持學報。19(4):60~64。 塚本良則(1992)森林水文學。文永堂。pp.37~101。 篠原慶規、井手淳一郎、東直子、小松光、久米朋宣、智和正明、大槻恭一(2010)管理放棄されたヒノキ人工林における樹冠遮断量の計測。日本森林學會誌。92:54~59。 Asdak C., P. G.. Jarvis, P. van Gardingen and A. Fraser. (1998) Rainfall interception loss in unlogged and logged forest areas of Central Kalimantan, Indonesia. Journal of Hydrology. 206: 237~244. Berger T. W., U. Hubert, S. Helmut and J. Georg. (2008) Throughfall fluxes in a secondary spruce (Picea abies),a beech (Fagus sylvatica) and a mixed spruce–beech stand. Forest Ecology and Management. 255: 605~618. Herwitz S. R. and R. E. Slye. (1992) Spatial variability in the interception of inclined rainfall by a tropical rainforest canopy. Selbyana. 13: 62~71. Holder C. D. (2004) Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala. Forest Ecology and Management. 190: 373~384. Horton R. E. (1919) Rainfall interception. Monthly Weather Review. 47(9): 603~623. Katayama A., T. Kume, H. Komatsu, M. Ohashi, M. Nakagawa, M. Yamashita, K. Otsuki, M. Suzuki and T. Kumagai. (2009) Effect of forest structure on the spatial variation in soil respiration in a Bornean tropical rainforest. Agricultural and Forest Meteorology. 149: 1666~1673. Kuraji K., Y. Tanaka, N. Tanaka and I. Karakama. (2001) Generation of stemflow volume and chemistry in a mature Japanese cypress forest. Hydrological Processes. 15: 1967~1978. Levia D. F. and S. J. Underwood (2004) Snowmelt induced stemflow in northern hardwood forests: a theoretical explanation on the causation of a neglectedhydrological process. Advances in Water Resources. 2: 21~128. Lloyd C. R. and A. D. Marques. (1988) Spatial variability of throughfall and stemflow measurements in Amazonian rainforest. Agricultural and Forest Meteorology. 42: 62~73. Lovett G.M. and J. D. Kinsman (1990) Atmospheic pollutant deposition to high-elevation ecosystems. Atmospheric Environment. 24(11): 2267~2786. Oyarzún C. E., G. Roberto, S. Jeroen, J. D. Pablo and E. C. V. Niko. (2011) Seasonal and annual throughfall and stemflow in Andean temperate rainforests. Hydrological Process. 25: 623~633. Prada S., M. M. de Sequeira , C. Figueira and M. O. da Silva. (2009) Fog precipitation and rainfall interception in the natural forests of Madeira Island (Portugal). Agricultural and Forest Meteorology. 149: 1179~1187. Prada S., M. M. de Sequeira , C. Figueira and R. Vasconcelos. (2011) Cloud water intereception in the high altitude tree heath forest (Erica arborea L.) of Paul da Serra Massif (Madeira, Portugal). Hydrological Processes. 26(2): 202~215. Shinohara Y., Y. Onozawa, M. Chiwa, T. Kume, H. Komatsu and K. Otsuki. (2010) Spatial variations in throughfall in a Moso bamboo forest: sampling design for the estimates of stand-scale throughfall. Hydrological Processes. 24(3): 253~259. Tanaka N., C. Tantasirin, K. Kuraji, M. Suzuki and N. Tangthan. (2005) Inter-anual Variation in Rainfall Interception at a Hill Evergreen Forest in Northern Thailand. Bull. Tokyo Univ. Forests. 113: 11~44. Veneklaas E.J. and R. Van EK. (1990) Rainfall interception in two tropical montane rain forests, Colombia. Hydrology Processes. 4: 311~326. Vis M. (1986) Interception drop size distributions and rainfall kinetic energy in four Columbian forest ecosystems. Earth Surface Process and Landforms. 11: 591~603. Went F.W. (1955) Fog, mist, dew, and other sources of water. In: Year book of Agriculture. US Department of Agriculture, Washington D.C. p.103~109. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64091 | - |
| dc.description.abstract | 當雨水進入林木受到冠層的攔截,使得部分水分留存在冠層中,將改變降水到地面在時間或在空間上的分佈。本研究於合歡山台 14 甲線 35.5km,靠近小風口處,對臺灣冷杉進行一整年的研究。研究期間(2011.3~2012.2)合歡山臺灣冷杉樣區的林外年降水為3,560±110 mm(總和±標準差),穿落水為 3,070±90 mm(86%),幹流水為 200±10 mm(6%),若以截留量=林外降水量-穿落水量-幹流水量計算,則截留量為 290 mm(8%),而穿落水與降水量有一良好的線性關係(y=0.85x+1.76,R2=0.97,n=28,13≦x≦363,x為林外降水,y為穿落水),而在降雨延時較長的時段,總降水量與穿落水的變異有增加,且幹流水的比例有上升的趨勢,另外,樹冠冠幅隨林木胸高直徑(DBH)的上升而增加,使臺灣冷杉能收集到更多的幹流水量。
本研究藉由分析 LAI(Leaf area index)、樹木密度、林木平均 DBH、林木最大DBH 與年平均穿落水水量的關係,得到在穿落水收集器範圍 6 公尺左右時,樹木密度與平均 DBH 會影響穿落水的水量,但影響效果有限。 此外,臺灣冷杉林在夏秋季時的冠層較為乾燥,因此截留能力較強;冬春季時的冠層較為濕潤,因此截留能力較差。 | zh_TW |
| dc.description.abstract | When canopy intercepts the rainfall, some water can be kept in the canopy. This can change the time or redistribution when rainfall dropped down. This research was conducted at 35.5km near Shao-feng-kou service tourist center at Mt. Hehuan. This study was on Taiwanese fir stand from Mar-2011 to Feb-2011. Results showed that annual rainfall was 3,560±90 mm (sum±SD), throughfall was 3,070±110 mm (86%), and stemflow was 200±10 mm (6%) for the studied year. According to water balance (the interception = rainfall - throughfall – stemflow), the interception was calculated to be 290 mm (8%). A good linear relationship was found between throughfall and rainfall (y=0.85x+1.76,R 2 =0.97, n=28, 13≦x≦363, x=rainfall, y=throughfall). The canopy also showed increased as DBH increased so that stemflow increased.
This research found significant correction between throughfall and forest structural parameters such as LAI, tree density, average DBH, and maximum DBH. The most important factors were the tree density and average DBH within 6 m of the measurement points, which had better relationship with throughfall. Since the canopy of Taiwanese fir was drier during Summer and Fall, so it could intercept more rainfall. On the contrary, it was wetter during Winter and Spring, so it intercept less rainfall than the drier seasons. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:29:37Z (GMT). No. of bitstreams: 1 ntu-101-R99625057-1.pdf: 2470525 bytes, checksum: 0bf015a06ab5dc54c7803c21e4c6939c (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 ......................................... i
中文摘要......................................ii ABSTRACT ....................................iii 目錄 ....................................... iv 表次 ........................................ v 圖次 ....................................... vi 附表次...................................... vii I. 前言................................. 1 II. 材料與方法............................ 3 (I) 研究地點 ......................... 3 (II) 採集內容與方法.................... 8 1. 水樣收集........................... 8 2. 樣區內配置圖...................... 10 (III) 資料運算與方法.................... 11 1. 截留公式.......................... 11 2. 水量計算.......................... 11 3. LAI 量測.......................... 12 III. 結果................................. 13 (I) 觀測結果 ........................ 13 (II) 穿落水與幹流水趨勢 .............. 16 (III) 幹流水與 DBH ..................... 18 (IV) 截留與降水......................... 19 (V) 空間分析 .......................... 21 1. 穿落水水量與 LAI.................. 21 2. 穿落水水量與各因子的空間分析 ..... 22 IV. 討論.................................. 24 (I) 世界各地 ........................ 24 (II) 影響因子與降水形式 .............. 27 1. 鋒面 ............................. 27 2. 降雪 ............................. 27 3. 午後雨............................ 28 4. 颱風外圍環流...................... 28 (III) 空間變異 ......................... 29 V. 結論................................. 30 VI. 參考文獻.............................. 31 VII. 附表.................................. 35 | |
| dc.language.iso | zh-TW | |
| dc.subject | 穿落水空間分析 | zh_TW |
| dc.subject | 截留作用 | zh_TW |
| dc.subject | 臺灣冷杉 | zh_TW |
| dc.subject | 合歡山 | zh_TW |
| dc.subject | Mt. Hehuan | en |
| dc.subject | Abies kawakamii | en |
| dc.subject | Interception | en |
| dc.subject | Throughfall spatial analysis | en |
| dc.title | 合歡山臺灣冷杉林截留作用之研究 | zh_TW |
| dc.title | Interception of Abies kawakamii Forest
At Mt. Hehuan, Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 久米朋宣(Tomonori Kume) | |
| dc.contributor.oralexamcommittee | 林登秋 | |
| dc.subject.keyword | 合歡山,臺灣冷杉,截留作用,穿落水空間分析, | zh_TW |
| dc.subject.keyword | Mt. Hehuan,Abies kawakamii,Interception,Throughfall spatial analysis, | en |
| dc.relation.page | 53 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
