請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64089完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周宏農博士(Dr. Hong-Nong Chou) | |
| dc.contributor.author | Sheau Shyang Tai | en |
| dc.contributor.author | 戴小祥 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:29:32Z | - |
| dc.date.available | 2012-08-19 | |
| dc.date.copyright | 2012-08-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | 周宏農 (1999) 水產品藻源毒素檢測操作手則,行政院衛生署,台北,pp1-22
Abrahams MV, and Townsend LD (1993). Bioluminescence in dinoflagellates: a test of the burglar alarm hypothesis. Ecology 74 (1): 258-260 Adobe Photoshop CS5.1 (2012) Using Adobe Photoshop CS5.1 [Computer Software] California: Adobe Systems Incorporated Akimoto H, Wu C, Kinumi T, and Ohmiya Y (2004). Biological rhythmicity in expressed proteins of the marine dinoflagellate Lingulodinium polyedrum demonstrated by chronological proteomics. Biochem Biophys Res Comm 315: 306-312 Akimoto H, Kinumi T, and Ohmiya Y (2005). Circadian rhythm of a TCA cycle enzyme is apparently regulated at the translational level in the dinoflagellate Lingulodinium polyedrum. J Biol Rhy 20 (6): 479-489 Bhaumik S, and Gambhir SS (2002). Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci 99: 377-382 Biggley WH, Swift E, Buchanan RJ, and Seliger HH (1969). Stimulable and spontaneous luminescence in the marine dinoflagellates Pyrodinium bahamense, Gonyaulax polyedra, and Pyrocystis lunula. J Gen Physiol 54: 96-122 Bode VC, De Sa R, and Hastings JW (1963). Daily rhythm of luciferin activity in Gonyaulax polyedra. Science 141: 913-915 Bowman JE (1856). An introduction to practical chemistry, including analysis 2nd Ed. Blancard and Lea, Philadelphia, USA Choi YS, Bae JS, Lee KS, Kim SR, Kim I, Kim JG, Kim KY, Kim SE, Suzuki H, Lee SM, Sohn HD, and Jin BR (2003). Genomic structure of the luciferase gene and phylogenetic analysis in the Hotaria-group fireflies. Comp Biochem Physiol B 134: 199-214 Comolli J, Taylor W, Rehman J, and Hastings JW (1996). Inhibitors of serine/threonine phosphoprotein phosphatases alter circadian properties in Gonyaulax polyedra. Plant Physiol 111: 285-291 Comolli JC, Fagan T, and Hastings JW (2003). A type-1 phosphoprotein phosphatase from a dinoflagellate as a possible component of the circadian mechanism. J Biol Rhythms 18 (5): 367-376 Corellou F, Schwartz C, Motta JP, Djouani-Tahri EB, Sanchez F, and Bouget FY (2009). Clocks in the green lineage: comparative functional analysis of the circadian architecture of the picoeukaryote Ostreococcus. The Plant Cell 24: 3436-3449 Denton EJ, Herring PJ, Widder EA, Latz MF, and Case JF (1985). The roles of filters in the photophores of oceanic animals and their relation to vision in the oceanic environment. Proc R Soc Lond B 225: 63-97 Desjardins M, and Morse D (1993). The polypeptide components of scintillons, the bioluminescence organelles of the dinoflagellate Gonyaulax polyedra. Int J Biochem Cell B 71: 176-182 Dodge JD (1987). Dinoflagellate ultrastructure. In Taylor FJR ed. The biology of dinoflagellates. Botanical Monographs Volume 21, Blackwell Scientific Publications, Oxford. Dunlap JC and Hastings JW (1981). Biochemistry of dinoflagellate bioluminescence: purification and characterization of dinoflagellate luciferin from Pyrocystis lunula. Biochemistry 20: 983-989 Eckert R (1965). Bioelectric control of bioluminescence in the dinoflagellate Noctiluca. Science 147: 1140-1145 Eckert R (1966). Subcellular sources of luminescence in Noctiluca. Science 151: 349-352 Eckert R (1967). The wave form of luminescence emitted by Noctiluca. J Gen Physiol 50 (9): 2211-2237 Fogel M, and Hastings JW (1971). A substrate binding protein in the Gonyaulax bioluminescence reaction. Arch Biochem Biophys 142: 310-321 Fogel M, Schmitter RE, and Hastings JW (1972). On the physical identity of scintillons: bioluminescent particles of Gonyaulax polyedra. J Cell Sci 11: 305-317 Fritz L, Morse D, and Hastings JW (1990). The circadian bioluminescence rhythm of Gonyaulax is related to daily variations in the number of light-emitting organelles. J Cell Sci 95: 321-328 Fuller PM, Lu J, and Saper CB (2009). Review: standards of evidence in chronobiology: a response. J Circadian Rhythms 7 (9): 1-16. Gaines G, and Elbrachter M (1987). The biology of dinoflagellates: heterotrophic nutrition. London: Blackwell Scientific Publication, pp 224-268 Guilard R, and Ryther J (1962). Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonulacon fervacea (Cleve) Gran. Can J Microbiol 8: 229-239 Haidekker MA, L’Heureux N, and Frangos JA (2000). Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence. Am J Physio-Heart C 278 (4): 1401-1406 Hallegraeff GM (1993). Review of harmful algal blooms and their apparent global increase. Phycologia 32: 79-99 Hardeland R (1979). Effects of catecholamines on bioluminescence in Gonyaulax polyedra (Dinoflagellata).Comp Biochem Physiol 66C: 53-58 Harvey EN (1952). Bioluminescence. New York: Academic Press, pp 649 Hastings JW (1972). Bioluminescence: mechanism and mode of control of scintillon activity. Proc Natl Acad Sci USA 69: 690-693 Hastings JW (1989). Chemistry, clones, and circadian control of the dinoflagellate bioluminescent system. J Biolum Chemilum 4: 12-19 Hastings JW (1996). Chemistries and colors of bioluminescent reactions: a review. Gene 173: 5-11. Hastings JW, Astrachan L, and Sweeney BM (1961). A persistent daily rhythm in photosynthesis. J Gen Physiol 45: 69-76 Hastings JW, and Dunlap JC (1986). Cell-free components in dinoflagellate bioluminescence. The particulate activity: scintillons; the soluble components: luciferase, luciferin, and luciferin binding protein. Method Enzymol 133: 307-327. Hastings JW, Kricka L, and Stanley P (1997). Bioluminescence and chemiluminescence: molecular reporting by photons. Chichester: Wiley Hastings JW, and Morin JG (1991). Bioluminescence: neural and integrative animal physiology [comparative animal physiology]. New York: Wiley-Liss Inc., pp 131-170 Hastings JW, Schultz W, and Liu L (2009). Dinoflagellate bioluminescence and its circadian regulation. Photobiological Science Online (KC Smith, ed.) American Society for Photobiology. Available at: http://www.photobiology.info/Hastings. html Accessed Dec 17, 2012 Hastings JW, and Sweeney BM (1958). A persistent diurnal rhythm of luminescence in Gonyaulax polyedra. Biol Bull 115: 440-458 Herring PJ (1987). Systematic distribution of luminescent organisms. J Biolum Chemilum 1: 147-163 Hunt RWG (2004). The Reproduction of Color (6th ed.). Chichester UK: Wiley–IS&T Series in Imaging Science and Technology Johnson CH, Rieber JF, and Hastings JW (1984). Circadian changes in enzyme concentration account for rhythm of enzyme activity in Gonyaulax. Science 223: 1428-1430 Johnson CH, Inoue S, Flint A, and Hastings JW (1985). Compartmentalization of algal bioluminescence: autofluorescence of bioluminescent particles in the dinoflagellate Gonyaulax as studied with image-intensified video microscopy and flow cytometry. J Cell Biol 100: 1428-1446 Karen LV, Foster J, Doino J, McFall-Ngai M, and Ruby EG (2000). Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J Bacteriol 182 (16): 4578-4586 Knaust R, Urbig T, Li L, Taylor W, and Hastings JW (1998). The circadian rhythm of bioluminescence in Pyrocystis is not due to differences in the amount of luciferase: a comparative study of three bioluminescent marine dinoflagellates. J Phycol 34: 167-172 Krasnow R, Dunlap JC, Taylor W, Hastings JW, Vetterling W, and Gooch VD (1980). Circadian spontaneous bioluminescent glow and flashing of Gonyaulax polyedra. J Comp Physiol 138: 19-26 Krieger N, and Hastings JW (1968). Bioluminescence: pH activity profiles of related luciferase fractions. Science 161: 586-589 Latz MI, Case JF, and Gran RL (1994). Excitation of bioluminescence by laminar fluid shear associated with simple Couette flow. Limnol. Oceanogr 39 (6): 1424-1439 Latz MI, Nauen JC, and Rohr J (2004). Bioluminescence response of four species of dinoflagellates to fully developed pipe flow. J Plankton Res 26 (12): 1529-1546 Li L, Hong R, and Hastings JW (1997). Three functional luciferase domains in a single polypeptide chain. Proc Natl Acad Sci USA 94: 8954-8958 Liu L, Im H, Cegielski M, LeMagueres P, Schultz LW, Krause KL, and Hastings, JW (2003). Characterization and crystallization of active domains of a novel luciferase from a marine dinoflagellate. Biol Crystallogr D59: 761-764 Lu WQ, Meng QJ, Tyler NJC, Stokkan KA., and Loudon ASI (2010). A circadian clock is not required in an arctic mammal. Curr Biol 20: 533-537 Martinac B, Adler J, and Kung C (1990). Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348: 261-263 Mas P, Alabadi D, Yanovsky MJ, Oyama T, and Kay SA (2003). Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. The Plant Cell 15: 223-236 McClung CR (2001). Circadian rhythms in plants. Annu Rev Plant Phys 52: 139-162 McDougall CA (2002). Bioluminescence and the actin cytoskeleton in the dinoflagellate Pyrocystis fusiformis: an examination of organelle transport and mechanotransduction (Doctorial Dissertations). UC San Diego: California Sea Grant College Program. Retrieved from: http://escholarship.org/uc/item/7ww5k7ht Mittag M, Li L, and Hastings JW (1998). The mRNA level of the circadian regulated Gonyaulax luciferase remains constant over the cycle. Chronobiol Int 15: 93-98 Mittag M, Lee D-H, and Hastings JW (1994). Circadian expression of the luciferin-binding protein correlates with the binding of a protein to the 3’ untranslated region of its mRNA. Proc Natl Acad Sci USA 91: 5257-5261 Morin JG (1983). Coastal bioluminescence: patterns and functions. Bull Mar Sci 33: 787-817 Morin JG and Hastings JW (1971). Energy transfer in a bioluminescent system. J Cell Physiol 77: 313-318 Morise H, Shimomura O, Johnson FH, and Winant J (1974). Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry 13: 2656-2662 Morse D, Milos PM, Roux E, and Hastings JW (1989a). Circadian regulation of bioluminescence in Gonyaulax involves translational control. Proc Natl Acad Sci USA 86: 172-176 Morse D, Pappenheimer AM, and Hastings JW (1989b). Role of a luciferin binding protein in the circadian bioluminescent reaction of Gonyaulax polyedra. J Biol Chem 264: 11822-11826 Morse D, Fritz J, and Hastings JW (1990). What is the clock? Translational regulation of circadian bioluminescence. Trends Biochem 15: 262-265 Nakamura H, Kishi Y, Shimomura O, Morse D, and Hastings JW (1989). Structure of dinoflagellate luciferin and its enzymatic and nonenzymatic air-oxidation products. J Am Chem Soc 111: 7607-7611 Nicolas MT, Johnson CH, Bassot JM, and Hastings JW (1985). Immunogold labeling of organelles in the bioluminescent dinoflagellate Gonyaulax polyedra with anti-luciferase antibody. Cell Biol Int Rep 9: 797-802 Nicolas, MT, Nicolas G, Johnson CH, Bassot JM, and Hastings JW (1987). Characterization of the bioluminescent organelles in Gonyaulax polyedra (dinoflagellates) after fast-freeze fixation and antiluciferase immunogold staining. J Cell Biol 105: 723-735 Pawley JB (2006). Handbook of biological confocal microscopy (3rded.). Berlin: Springer Pedersen DB, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL and Zoran MJ (2005). Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6 (7): 544-556 Pittendrigh CS (1960). Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symp Quant Biol 25: 159-184 Prezelin BB, Meeson BW, and Sweeney BM (1977). Characterization of photosynthetic rhythms in marine dinoflagellates. Plant Physiol 60: 384-387. Prezelin B (1987). The biology of dinoflagellates: photosynthetic physiology of dinoflagellates. London: Blackwell Scientific Publication, pp174-223 Reppert SM, and Weaver DR (2002).Coordination of circadian timing in mammals. Nature 418: 935–941 Ridpath I (1997). A dictionary of astronomy: CCD spectrometer. Encyclopedia.com. Available at: http://www.encyclopedia.com/doc/1O80-CCDspectrometer.html. Accessed Jun 26, 2012 Rizzo PJ (1987). Biochemistry of the dinoflagellate nucleus. In Taylor FJR., ed. The biology of dinoflagellates. Botanical Monographs Volume 21, Blackwell Scientific Publications, Oxford Roenneberg T, and Deng TS (1997). Photobiology of the Gonyaulax circadian system. I. different phase response curves for red and blue light. Plant a202: 494-501. Sancar A (2000). Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. Annul Rev Biochem 69: 31-67. Schultz LW, Liu L, Cegielski M, and Hastings J W (2005) Crystal structure of a pH-regulated luciferase catalyzing the bioluminescent oxidation of an open tetrapyrrole. Proc Natl Acad Sci USA 102 (5): 1378-1383 Shimizu Y (1987). Dinoflagellate toxins. In Taylor FJR. ed. The biology of dinoflagellates. Botanical Monographs Volume 21, Blackwell Scientific Publications, Oxford Shimizu T (1993). Marine biotechnology: dinoflagellates as sources of bioactive molecule. New York: Plenum Press, pp 391-417 Smith SME, Morgan D, Musset B, Cherny VV, Place AR, Hastings JW, and DeCoursey TE (2011).Voltage-gated proton channel in a dinoflagellate. Proc Natl Acad Sci USA 108, 44: 18162-18167 Somers DE, Devlin PF, and Kay SA (1998). Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282: 1488-1490 Sulzman FM, Krieger NR, Gooch VD, and Hastings JW (1978).A circadian rhythm of the luciferin binding protein from Gonyaulax polyedra. J Comp Physiol 128: 251-257 Sun XW, and Weng HX (2010).Effects of light intensity on chlorophyll concentration of Prorocentrum donghaiense. E-Product E-Service and E-Entertainment (ICEEE), 2010 International Conference on , vol., no., pp.1-3, 7-9 Nov. 2010 Suzuki C, Nakajima Y, Akimoto H, Wu C, and Ohmiya Y (2005). A new additional reporter enzyme, dinoflagellate luciferase, for monitoring of gene expression in mammalian cells. Gene 344: 61-66 Sweeney BM (1984). Dinoflagellates: circadian rhythmicity in dinoflagellates. Florida: Academic Press Inc, pp 343-361 Sweeney BM (1987). Bioluminescence and circadian rhythms. In Taylor FJR. ed. The biology of dinoflagellates. Botanical Monographs Volume 21, Blackwell Scientific Publications, Oxford Sweeney BM and Hastings JW (2005). Characteristics of the diurnal rhythm of luminescence in Gonyaulax polyedra. J Cell Comp Physiol 49, 1: 115-128 Swift E, and Taylor WR (1967). Bioluminescence and chloroplast movement in the dinoflagellate Pyrocystis lunula. J Phycol 3: 77-81 Swift E, Biggley WH, and Seliger HH (1973). Species of oceanic dinoflagellates in the genera Dissodinium and Pyrocystis: interclonal and interspecific comparisons of the color and photon yield of bioluminescence. J Phycol 9 (4): 420-426 Taylor FJR (1987). Dinoflagellate morphology. In Taylor FJR. ed. The biology of dinoflagellates. Botanical Monographs Volume 21, Blackwell Scientific Publications, Oxford Taylor FJR, Fukuyo Y, Larsen J (1995). Taxonomy of harmful dinoflagellates. In: Manual on Harmful Marine Microalgae, Hallegraeff GM, Andersen DM, Cembella AD (Eds.) Intergovernmental Oceanographic Commission, Manuals and Guides 33: 283-317. UNESCO, Paris Timmins GS, Jackson SK, and Swartz H (2000). The evolution of bioluminescent oxygen consumption as an ancient oxygen detoxification mechanism. J Mol Evol 52: 321-332 Topalov G, and Kishi Y (2001). Chlorophyll catabolism leading to the skeleton of dinoflagellate and krill luciferins: hypothesis and model studies. Angew Chem Int Ed 40 (20): 3892-3894 Valeur B, and Santos MNB (2011). A brief history of fluorescence and phosphorescence before the emergence of quantum theory. J. Chem. Educ. 88 (6): 731-738 Veendrick HJM (2008). Nanometer CMOS ICs, from Basics to ASICs. New York: Springer. pp 770 Ward WW (1979). Energy transfer processes in bioluminescence. Photochem Photobiol 4: 1-57 Widder EA, and Case JF (1981). Two flash forms in the bioluminescent dinoflagellate, Pyrocystis fusiformis. J Comp Physiol 143: 43-52 Widder EA, and Case JF (1982). Luminescent microsource activity in bioluminescence of the dinoflagellate, Pyrocystis fusiformis. J Comp Physiol 145: 517-527 Widder WA (2010). Review: Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328: 704-708 Wu C, Akimoto H, and Ohmiya Y (2003). Tracer studies on dinoflagellate luciferin with [15N]-glycine and [15N]-L-glutamic acid in the dinoflagellate Pyrocystis lunula. Tetrahydron Lett 44: 1263-1266 Young MW, and Kay SA (2001). Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2: 702–715 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64089 | - |
| dc.description.abstract | 一直以來,渦鞭毛藻的生物螢光都是研究者感興趣的研究課題,然而經過多年的研究,其螢光特性和生物及化學機制仍然尚未解開。
渦鞭毛藻的生物螢光已被證實是由一種結構上類似葉綠素a的螢光素,在酵素催化下發生氧化還原反應或者受紫外線激發時,能夠放出波長470nm的藍綠色螢光。透過螢光顯微鏡及共軛焦顯微鏡,我們發現塔瑪亞歷山大藻之螢光素在暗周期時會聚集成小球狀(螢光胞器)且分布於細胞表面,而此螢光胞器在光周期時卻不存在;不帶有生物螢光之微小亞歷山大藻無論在光或暗周期都未發現螢光胞器;此外,我們也發現塔瑪亞歷山大藻中的葉綠體在光周期時會分布在細胞表面,而暗周期時會往細胞中心聚集,這種現像僅在Pyrocystis中存在。 由前人研究得知,渦鞭毛藻之生物螢光只表現於暗周期且必須由物理性的刺激所激發,因此我們設計了一個可透過搖動器震盪藻液,並以單眼相機同步測量生物螢光的裝置。其他渦鞭毛藻的生物螢光通常被生理時鐘所調控,然而在塔瑪亞歷山大藻的生物螢光周期中,我們發現其生物螢光只固定發生在光暗周期變化中的暗周期,且非常容易受到光線的抑制及調控。由本研究所觀察到的現像,我們認為塔瑪亞歷山大藻的生物螢光存在著螢光素的生物時鐘表現,然而伴隨著其與螢光酵素的生物螢光表現卻受到光線的干擾而抑制,這是相同渦鞭毛藻生物螢光的種類中,尚未被引述的現像。雖然其生物螢光表現受到光抑制,我們也發現其螢光胞器內的螢光酵素依然會在連續4小時強光的照射下被破壞殆盡,而光線之移除可以馬上啟動另一次的生物螢光周期。 另外,我們也發現塔瑪亞歷山大藻生物螢光會隨著不同光照長短的光暗周期(8:16光暗周期,12:12光暗周期和16:8光暗周期)進行不超過±2小時的調整。總結來說,雖然本研究室仍未對渦鞭毛藻生物螢光韻律之研究有更深入的探討,但目前這些對塔瑪亞歷山大藻的生物螢光週期的研究,有助於我们更進一步了解渦鞭毛藻的生物時鐘和其特性。 | zh_TW |
| dc.description.abstract | Bioluminescence of dinoflagellates is one of the interesting topics which have attracted the attention of researchers, but its characters and mechanisms are yet to be determined. Bioluminescence of A. tamarense was observed only in the dark period upon physical stimulation by shaking, but not in the light period when the cultures were maintained and acclimated to a daily 24 hours cycle of alternative light and dark period. These observations were being operated by using our newly designed instrument. Photoluminescence of the in vivo luciferin was detected under a fluorescent and a laser scanning confocal microscope that showed the luciferin-containing scintillons being located on the peripheral of cell cytoplasm and appeared only in dark period. It was also evidenced by the absence of such photoluminescence in both light and dark period of non-bioluminescent Alexandrium minutum. At the meantime, the chlorophyll a containing chloroplasts were found to be located at the cell peripheral during light period and in the center during dark period, which only being reported in Pyrocystis species so far. Although bioluminescence in other dinoflagellates was being described as circadian-regulated, our observation on A. tamarense bioluminescence showed more light-regulated. Shorten of the dark period also shorten the period of bioluminescence. However, unlike the light-regulated bioluminescence expression in A. tamarense, the aggregation of luciferin observed by its photoluminescence were found unaffected by light and followed the circadian rhythm for the first two cycles and diminished under continuous dim light. This expression was also different from other dinoflagellates which their circadian rhythms can sustain for up to twenty cycles or more. Besides, the circadian rhythmic photoluminescence of luciferin aggregation could be broken down by continuous four hours of strong illumination, while removal of light could induce another cycle of bioluminescence as in our observation in A. tamarense. Furthermore, this intracellular rhythm can be acclimated, but within a limited capacity, to different photoperiod (LD 8:16, LD 12:12 and LD 16:8) and remained a 12 ± 2 hours of bioluminescence duration. Although our study in A. tamarense bioluminescence characteristics was just the initiatory to this field, further investigations of those findings can not only lead to a deeper understanding of the circadian control in bioluminescence of this species, but also the circadian oscillation principles common to all organisms. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:29:32Z (GMT). No. of bitstreams: 1 ntu-101-R99b45028-1.pdf: 1265621 bytes, checksum: 42d09d1366bb28171df6ef3b2ca1955d (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致谢 I
ABSTRACT II 中文摘要 IV TABLE OF CONTENTS V CHAPTER I INTRODUCTION 1.1 Dinoflagellates 1 1.2 Dinoflagellate Bioluminescence and Its Circadian Regulation 2 1.2.1 Overview of Bioluminescence 3 1.2.2 Biochemistry of Dinoflagellate Bioluminescence 4 1.2.3 Circadian Rhythm in Dinoflagellate Bioluminescence 7 1.3 Hypothesis 10 CHAPTER II MATERIALS AND METHODS 2.1 Culture Conditions 11 2.2 Measurement of in vivo Bioluminescence 11 2.3 Fluorescence Microscopy 12 2.4 Laser Scanning Confocal Microscopy 12 2.5 Images Analysis 13 CHAPTER III RESULTS 3.1 The Influence of Oscillation Intervals on Alexandrium tamarense's Bioluminescence and Photoluminescence Expression 14 3.2 Day-night Scintillons and Chloroplasts Distribution Changes 14 3.3 Bioluminescence and Photoluminescence Rhythms of A. tamarense and Its Light Regulation 16 3.4 Acclimation of A. tamarense's Bioluminescence to Different Photoperiod 20 CHAPTER IV DISCUSSION 4.1 Modified Methods for Alexandrium tamarense Bioluminescence and Photoluminescence Measurement 22 4.2 Day-night Scintillons and Chloroplasts Distribution Changes 25 4.3 Bioluminescence and Photoluminescence Rhythms of A. tamarense and Its Light Regulation 26 4.4 cclimation of A. tamarense's Bioluminescence to Different Photoperiod 34 REFERENCES 37 TABLES 46 FIGURES 48 | |
| dc.language.iso | en | |
| dc.subject | 塔瑪亞歷山大藻 | zh_TW |
| dc.subject | 生物螢光 | zh_TW |
| dc.subject | 光動螢光 | zh_TW |
| dc.subject | 生物時鐘 | zh_TW |
| dc.subject | 光調控 | zh_TW |
| dc.subject | 光週期馴化 | zh_TW |
| dc.subject | Light regulation | en |
| dc.subject | Alexandrium tamarense | en |
| dc.subject | Bioluminescence | en |
| dc.subject | Photoluminescence | en |
| dc.subject | Circadian rhythm | en |
| dc.subject | Photoperiod acclimation | en |
| dc.title | 塔瑪亞歷山大藻之細胞內生物螢光和光動螢光韻律之研究 | zh_TW |
| dc.title | Characterization of the in vivo bioluminescence and photoluminescence rhythms of the dinoflagellate,
Alexandrium tamarense | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳俊宗博士(Dr. Jiunn-Tzong Wu),蘇惠美博士(Dr. Huei-Meei Su),鄧資新博士(Tzu-Shing Deng) | |
| dc.subject.keyword | 塔瑪亞歷山大藻,生物螢光,光動螢光,生物時鐘,光調控,光週期馴化, | zh_TW |
| dc.subject.keyword | Alexandrium tamarense,Bioluminescence,Photoluminescence,Circadian rhythm,Light regulation,Photoperiod acclimation, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
