請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64080
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 顏溪成 | |
dc.contributor.author | Yung-Wei Chang | en |
dc.contributor.author | 張永蔚 | zh_TW |
dc.date.accessioned | 2021-06-16T17:29:10Z | - |
dc.date.available | 2012-08-19 | |
dc.date.copyright | 2012-08-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-16 | |
dc.identifier.citation | 參考文獻
[1]黃可龍。鋰離子電池原理與技術,2010。 [2]M. Sasaki, K. Takahashi, Y. Haneda, H. Satoh, A. Sasaki, A. Narumi, T. Satoh, T. Kakuchi and H. Kaga, “Thermochemical transformation of glucose to 1,6-anhydroglucose in high-temperature steam,” carbohydrate research, 343 (2008) 848-854. [3]S. Bourderau, T. Brousse, D. M. Schleich, “Amorphous silicon as a possible anode material for Li-ion batteries,” Journal of Power Sources, 81-82 (1999) 233-236. [4]W. R. Liu, Z. Z. Guo, W. S. Young, D. T. Shieh, H. C. Wu, M. H. Yang, N. L. Wu, “Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive,” Journal of Power Sources, 140 (2005) 139-144. [5]G. X. Wang, J. H. Ahn, J. Yao, S. Bewlay, H. K. Liu, “Nanostructured Si-C composite anodes for lithium-ion batteries,” Electrochemistry Communications, 6 (2004) 689-692. [6]J. Shu, H. Li, R. Yang, Y. Shi, X. Huang, “Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries,” Electrochemicstry Communications, 8 (2006) 51-54. [7]T. Zhang, J. Gao, H. P. Zhang, L. C. Yang, Y. P. Wu, H. Q. Wu, “Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries” , Electrochemistry Communications, 9 (2007) 886-890. [8]S. H. Ng, J. Wang, K. Konstantinov, D. Wexler, S.Y. Chew, Z.P. Guo, H. K. Liu, “Spray-pyrolyzed silicon/disordered carbon nanocomposites for lithium-ion battery andoes,” Journal of Power Sources, 174 (2007) 823-827. [9]Y. Zheng, J. Yang, J. Wang, Y. NuLi, “Nano-porous Si/C composites for anode material of lithium-ion batteries,” Electrochimica Acta, 52 (2007) 5863-5867. [10]Q. Si, K. Hanai, N. Imanishi, M. Kubo, A. Hirano, Y. Takeda, O. Yamamoto, “Highly reversible carbon-nano-silicon composite anodes for lithium rechargeable batteries,” Journal of Power Sources, 189 (2009) 761-765. [11]P. Gu, R. Cai, Y. Zhou, Z. Shao, “Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis,” Electrochimica Acta, 55 (2010) 3876-3883. [12]J. H. NOH, K. Y. LEE, J. K. LEE, “Electrochemical characteristics of phosphorus doped Si-C composite for anode active material of lithium secondary batteries,” Trans. Nonferrous Met. Soc. China, 19 (2009) 1018-1022. [13]N. Ding, J. Xu, Y. Yao, G. Wegner, I. Liebeerwirth, C. Chen, “Improvement of cyclability of Si as anode for Li-ion batteries, ” Journal of Power Sources, 192(2009) 644-651. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64080 | - |
dc.description.abstract | Abstract
Due to the invention of hybrid electric vehicles and electric vehicles in recent years, the commercialized batteries cannot make effort of loading. So we need lithium –ion batteries beneficial for their high energy density. But lithium-ion batteries with graphite used as anode materials were not efficient for the operations, so a lot of researchers began to investigate the improvement of electrode materials, components of full-scale batteries, etc.., to construct new lithium-ion batteries with higher energy density for the loading. In aspect of research of anode materials, many researchers started to investigate silicon to be a new one by its nature of semiconductor, good specific capacity, and lithium-insertion capacity. However, because the volume expansion occurs during operation, resulting mechanical cracking, further losing electric contact with electrolytes and shrinking the cyclability, they found more ways to resolve this disadvantage. One of them was to coat carbonaceous materials on the surface of silicon to form a carbon/silicon composite. This study was based the effect of different particle-size of silicon (commercial available micron-scale and nano-scale ones), with different processing temperature and holding time to perform the batch pyrolysis of silicon-glucose mixture, followed by analysis of Raman spectrometer to find the coated carbonaceous materials, enhancing mechanical properties of materials, disordered carbons were all detected in various conditions; analysis of X-ray diffractometer to find the existence of crystalline phase, in which the disappearance of specific crystalline phases was observed except for those obtained under 500℃; measurement of thermal differential analyzer to determine the amount of carbonaceous materials, and the amount of carbons of was higher above 50% under the preparation of processing temperature of 300℃ and 400℃; analysis of scanning electron microprobe to observe the morphology, the coating was checked to be well-defined. Then, aqueous SCMC(sodium carboxymethylcellulose) solution was used to bind graphene and pyrolyzed-carbon/silicon composites by mortar. Eventually, assembly half-cell to test the specific capacity of materials with galvanostatic mode by a battery automatic tester for the purpose of investigating the effect of particle size of silicon as anode materials on the performance of Li-ion batteries. By pristine-silicon-based electrodes, nano-Si-based electrode had better performance, its initial discharge capacity was 600mAh/g, charge capacity was 575.24mAh/g; composite-electrodes by the silicon with coating, the one pyrolyzed at 400℃ for 4 hours had better performance, initial discharge capacity was 601.05mAh/g; charge capacity was 420.66mAh/g. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:29:10Z (GMT). No. of bitstreams: 1 ntu-101-R99524077-1.pdf: 5512406 bytes, checksum: 39f77d41dff6b04e182bf0f0de2c3731 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄
摘要………………………………………………………………………………………1 Abstract…………………………………………………………………………………2目錄………………………………………………………………………………………4表目錄……………………………………………………………………………………6圖目錄……………………………………………………………………………………7第一章 緒論……………………………………………………………………………11 1.1 前言……………………………………………………………………11 1.2 鋰離子電池的介紹……………………………………………………11 1.3 研究目的及架構………………………………………………………13 第二章 文獻回顧………………………………………………………………………14 2.1 葡萄糖的熱裂解………………………………………………………14 2.2 以碳矽複合材料做為陽極材料及充放電循環壽命的表現…………14 2.3 鋰離子電池內各部組成的因子綜合研究……………………………29 第三章 實驗方法……………………………………………………………………34 3.1 實驗儀器設備…………………………………………………………34 3.2 實驗藥品及器材………………………………………………………34 3.3 實驗流程………………………………………………………………34 3.3-1 陽極材料製備…………………………………………………34 3.3-2 材料分析………………………………………………………35 3.3-3 半電池製備……………………………………………………36 3.3-4 充放電循環測試………………………………………………37 第四章 結果與討論……………………………………………………………………38 4.1 拉曼光譜分析…………………………………………………………38 4.2 X光繞射分析……………………………………………………………44 4.3 熱重示差同步掃描分析………………………………………………47 4.4 掃瞄式電子顯微鏡分析………………………………………………52 4.5 充放電循環測試分析…………………………………………………55 第五章 結論……………………………………………………………………………67 參考文獻………………………………………………………………………………68 | |
dc.language.iso | zh-TW | |
dc.title | 碳矽複合物應用於鋰離子電池陽極材料之研究 | zh_TW |
dc.title | Study of C/Si composites as anode materials of lithium-ion batteries | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 何國川,蔡子萱 | |
dc.subject.keyword | 碳矽複合物,石墨烯,鋰離子電池陽極材料, | zh_TW |
dc.subject.keyword | C/Si composite,graphene,anode materials of lithium-ion batteries, | en |
dc.relation.page | 69 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-16 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 5.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。