請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64072完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉雅瑄(Sofia Ya-Hsuan Liou) | |
| dc.contributor.author | Ju-Yen Shen | en |
| dc.contributor.author | 沈如妍 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:28:51Z | - |
| dc.date.available | 2025-03-05 | |
| dc.date.copyright | 2020-03-05 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-03-03 | |
| dc.identifier.citation | Atinault, E., De Waele, V., Schmidhammer, U., Fattahi, M., & Mostafavi, M. (2008). Scavenging of es− and OH radicals in concentrated HCl and NaCl aqueous solutions. Chemical Physics Letters, 460(4-6), 461-465.
Bustard, M. T., McEvoy, E. M., Goodwin, J. A. S., Burgess, J. G., & Wright, P. C. (2000). Biodegradation of propanol and isopropanol by a mixed microbial consortium. Applied microbiology and biotechnology, 54(3), 424-431. Buxton, G.V. et al. (1988) ‘Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O − in Aqueous Solution’, Journal of Physical and Chemical Reference Data. American Institute of Physics for the National Institute of Standards and Technology, 17(2), pp. 513–886. doi: 10.1063/1.555805. Chavadej, S. et al. (2008) ‘Photocatalytic degradation of 2-propanol by using Pt/TiO2 prepared by microemulsion technique’, Chemical Engineering Journal. Elsevier, 137(3), pp. 489–495. doi: 10.1016/J.CEJ.2007.05.001. Chen, G. (2004) ‘Electrochemical technologies in wastewater treatment’, Separation and Purification Technology. Elsevier, 38(1), pp. 11–41. doi: 10.1016/J.SEPPUR.2003.10.006. Cheng, Y. et al. (2011) ‘Effects of acetone on electrooxidation of 2-propanol in alkaline medium on the Pd/Ni-foam electrode’, Journal of Power Sources. Elsevier, 196(6), pp. 3124–3128. doi: 10.1016/J.JPOWSOUR.2010.12.008. Elovitz, M. S., vonGunten, U. andKaiser, H.-P. (2000) ‘Hydroxyl Radical/Ozone Ratios During Ozonation Processes. II. The Effect of Temperature, pH, Alkalinity, and DOM Properties’, Ozone: Science & Engineering. Taylor & Francis Group , 22(2), pp. 123–150. doi: 10.1080/01919510008547216. Garcia-Segura, S., Ocon, J. D. andChong, M. N. (2018) ‘Electrochemical oxidation remediation of real wastewater effluents — A review’, Process Safety and Environmental Protection. Elsevier, 113, pp. 48–67. doi: 10.1016/J.PSEP.2017.09.014. Gupta, S.Sen andDatta, J. (2005) An investigation into the electro-oxidation of ethanol and 2-propanol for application in direct alcohol fuel cells (DAFCs), J. Chem. Sci. Available at: https://link.springer.com/content/pdf/10.1007%2FBF02708448.pdf (Accessed: 17May2019). Habibi, B. andDadashpour, E. (2013) ‘Electrooxidation of 2-propanol and 2-butanol on the Pt–Ni alloy nanoparticles in acidic media’, Electrochimica Acta. Pergamon, 88, pp. 157–164. doi: 10.1016/J.ELECTACTA.2012.10.020. Hunter, T. B., Rice, S. F. andHanush, R. G. (1996) ‘Raman Spectroscopic Measurement of Oxidation in Supercritical Water. 2. Conversion of Isopropyl Alcohol to Acetone’. doi: 10.1021/ie9505118. Kapałka, A., Fóti, G. andComninellis, C. (2007) ‘Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment’, Journal of Applied Electrochemistry. Springer Netherlands, 38(1), pp. 7–16. doi: 10.1007/s10800-007-9365-6. Kraft, A. (2008) ‘Electrochemical water disinfection: A short review’, Platinum Metals Review, pp. 177–185. doi: 10.1595/147106708X329273. Martínez-Huitle, C. A. et al. (2015) ‘Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review’. doi: 10.1021/acs.chemrev.5b00361. Martínez-Huitle, C. A. andFerro, S. (2006) ‘Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes’, Chem. Soc. Rev. The Royal Society of Chemistry, 35(12), pp. 1324–1340. doi: 10.1039/B517632H. Neto, S. A., & De Andrade, A. R. (2009). Electrochemical degradation of glyphosate formulations at DSA® anodes in chloride medium: an AOX formation study. Journal of applied electrochemistry, 39(10), 1863.. Panizza, M., & Cerisola, G. (2009). Direct and mediated anodic oxidation of organic pollutants. Chemical reviews, 109(12), 6541-6569. Rajkumar, D., Kim, J. G. andPalanivelu, K. (2005) ‘Indirect electrochemical oxidation of phenol in the presence of chloride for wastewater treatment’, Chemical Engineering and Technology, 28(1), pp. 98–105. doi: 10.1002/ceat.200407002. Rocha, J. H. B. et al. (2014) ‘Electrochemical degradation of Novacron Yellow C-RG using boron-doped diamond and platinum anodes: Direct and Indirect oxidation’, Electrochimica Acta. Pergamon, 140, pp. 419–426. doi: 10.1016/J.ELECTACTA.2014.06.030. Sequeira, C. A. C., Santos, D. M. F. andBrito, P. S. D. (2006) ‘Mediated and non-mediated electrochemical oxidation of isopropanol’, Applied Surface Science. North-Holland, 252(17), pp. 6093–6096. doi: 10.1016/J.APSUSC.2005.11.028. Trasatti, S. (1987) ‘Progress in the understanding of the mechanism of chlorine evolution at oxide electrodes’, Electrochimica Acta, pp. 369–382. doi: 10.1016/0013-4686(87)85001-6. TAYLOR, D. G., TRUDGILL, P. W., CRIPPS, R. E., & HARRIS, P. R. (1980). The microbial metabolism of acetone. Microbiology, 118(1), 159-170. Umeda, M., Sugii, H. andUchida, I. (2008) ‘Alcohol electrooxidation at Pt and Pt–Ru sputtered electrodes under elevated temperature and pressurized conditions’, Journal of Power Sources. Elsevier, 179(2), pp. 489–496. doi: 10.1016/J.JPOWSOUR.2008.01.011. Wu, J. J. et al. (2008) ‘The oxidation study of 2-propanol using ozone-based advanced oxidation processes’, Separation and Purification Technology, 62(1), pp. 39–46. doi: 10.1016/j.seppur.2007.12.018. Ye, J. et al. (2007a) ‘Electrooxidation of 2-propanol on Pt, Pd and Au in alkaline medium’, Electrochemistry Communications. Elsevier, 9(12), pp. 2760–2763. doi: 10.1016/J.ELECOM.2007.09.016. 胡啟章,「電化學原理與方法」,台北市,五南,二版,2012。 行政院環保署 (2015)〝104年事業廢棄物申報量統計報告〞 行政院環保署 (2018)〝107年事業廢棄物申報量統計報告〞 行政院環保署毒理資料庫 (CAS_NO 67-63-0) 財團法人工業技術研究院環境與安全衛生技術法展中心 (2003) 〝電子事業廢棄物產出特性與處理現況分析〞 行政院環境保護署環境檢驗所 (2018) 〝水中餘氯檢測方法-分光光度計法〞 (NIEA W408.51A) 陳公平,「游泳者下水前沖洗對於游泳池水有機物量影響與消毒副產物致癌風險評估之研究—以北市某國小室內泳池為例」,國立臺灣師範大學健康促進與衛生教育學系碩士論文,2015 謝曉明,「廢水處理單元逸散會發性有機物檢測及量的推估」,國立中興大學環境工程學系在職專班碩士論文,2013 劉致中(2013)。亞洲地區近期異丙醇市場與廠商的發展狀態,取自:http://www.ibuyplastic.com/tech_center/tech_paper/tech_detailcontent.phtml?id=763&IBP_SID=7e97adf84abee6003266f6384d0e84fd | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64072 | - |
| dc.description.abstract | 異丙醇(Isopropanol,簡稱IPA)為當前用途廣泛之有機溶劑,隨著工業及高科技產業的發展,含異丙醇之廢水問題日趨嚴重,此外,氧化過程中所產生的丙酮,亦會對環境造成負擔。電化學氧化法具有快速、易操作、乾淨等優點,並已成功應用於處理多種有機污染物。本研究將利用電化學氧化法,以與質譜儀相連之自製密閉電化學反應槽,進行異丙醇氧化批次實驗。透過分析產物及中間產物,探討在含氯(氯化鈉)及不含氯(硫酸鈉)系統下,異丙醇氧化情形之差異,並在含氯系統中,改變電化學參數(電解液種類、電流強度、氯離子濃度、初始pH值),研究含氯物種對異丙醇氧化機制影響。
循環伏安曲線顯示,異丙醇氧化峰電流在不含氯系統中為2mA /cm2,約為含氯系統的兩倍,且經氧化產生之丙酮會在電極表面繼續被氧化,而在含氯系統中,並未出現丙酮氧化峰。在施加0.25 A之不含氯系統中,500 ppm的異丙醇經電解作用後,氧化成丙酮及二氧化碳,去除率達100.0 %。以相同的電化學條件,含氯系統中,異丙醇經氧化後會生成甲酸、乙酸等中間產物,去除率為89.0 %。批次實驗顯示,在含氯系統中,異丙醇去除效率在氯離子濃度20 mM、100 mM及150 mM下,分別為93.5 %、86.8 %及82.9 %,溶液中的丙酮含量隨著溶液中氯離子濃度增加而減少,相對的,有機酸含量增加。異丙醇去除效率在初始電解液pH 5、pH 6.5及pH 9 下分別為87.7 %、82.9 %及85.3 %,pH值越低,有機酸含量越多。 由本研究成果指出,異丙醇於兩大系統有相異的氧化機制,當電解液環境含有氯離子時,異丙醇於溶液體中與活性氯物種反應,且溶液中的活性氯物種會將丙酮氧化成有機酸,使溶液中丙酮含量不再增加。在不含氯系統中,氫氧自由基為主要的活性物種,將異丙醇氧化成丙酮及二氧化碳。本研究可建立以電化學氧化法處理含異丙醇廢水之效率及其氧化產物等資訊。 | zh_TW |
| dc.description.abstract | Isopropanol (IPA) is widely used in different industries. With the development of industrial and high-tech industries, the problem of wastewater containing isopropanol (IPA) has become increasingly serious; moreover, acetone, which is produced during the oxidation process will also cause another environmental problem. The electrochemical oxidation technique has the advantages of efficiency, easy to operate, clean and has been successfully applied to treating a variety of organic pollutants. In this study, an electrochemical oxidation method is used to conduct a batch experiment of isopropanol oxidation with a self-made closed electrochemical reaction tank connected to a mass spectrometer. By analyzing products and intermediate products, the differences of the oxidation of isopropanol under chlorine (sodium chloride) and non-chlorine (sodium sulfate) systems are explored. Electrochemical parameters (electrolyte type. current intensity, chloride ion concentration and initial pH value) are also changed to study the effects of chlorine-containing species to the oxidation mechanism of isopropanol.
The cyclic voltammetry curves showed that the oxidation current peak of isopropanol was 2 mA / cm2 in a chlorine-free system, which was about twice the chlorine-containing system, and the acetone produced by oxidation would continue to be oxidized on the electrode surface, in contrast, acetone oxidation peak was unobvious in chloride system. In the chloride-free system with 0.25 A, 500 ppm of isopropanol was oxidized to acetone and carbon dioxide after electrolysis and the removal rate reached to 100.0 %. Under the same electrochemical conditions, isopropanol was oxidized to formic acid and acetic acid in the chloride system, with a removal rate of 89.0 %. Batch experiments showed that in the chloride system, the removal efficiency of isopropanol was 93.5 %, 86.8 % and 82.9 % in 20 mM, 100 mM and 150 mM chloride ion concentration respectively. The increased chloride ion containing would increase the amount of organic acid. The removal efficiency of isopropanol was 87.7 %, 82.9 % and 85.3 % at the initial pH 5, pH 6.5 and pH 9 respectively. The lower the pH, the more organic acid content. According to the results, isopropanol has different oxidation mechanisms in the two major systems. When the electrolyte environment contains chloride ions, active chlorine species react with isopropanol in the solution and further oxidized acetone to an organic acid, therefore, the acetone concentration in the solution was no longer being increasing. In a chloride-free system, the hydroxyl radical is the main active specie, which oxidizes isopropanol to acetone and carbon dioxide. This study can establish information on the treatment of isopropanol-containing wastewater and oxidation products by electrochemical oxidation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:28:51Z (GMT). No. of bitstreams: 1 ntu-109-R06224207-1.pdf: 3935367 bytes, checksum: ecfeca23b39738297febf436c502eb53 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄
中文摘要 I Abstract III 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1. 研究源起 1 1.2. 研究目的與內容 2 第二章 文獻回顧 3 2.1. 異丙醇概要 3 2.1.1. 異丙醇特性及應用 3 2.1.2. 異丙醇的危害性 4 2.2. 異丙醇氧化文獻回顧 5 2.2.1. 生物 5 2.2.2. 超臨界水氧化技術(Supercritical water oxidation, SCWO) 5 2.2.3. 光降解(Photodegradation) 6 2.2.4. 電化學法 7 2.3. 電化學法 9 2.3.1. 電解氧化反應途徑 10 2.3.2. 活性物種 (Active species) 11 2.3.3. 電致化活性氯(Electro-generated Active Chlorine)氧化有機物 17 第三章 研究方法與設備 22 3.1 實驗設計與架構 22 3.2 實驗裝置與藥品 23 3.3 實驗分析儀器 27 3.4 電化學實驗 31 3.4.1. 異丙醇氧化實驗 31 3.4.2. 異丙醇氧化機制探討 33 3.5 實驗分析方法 35 3.5.1. 異丙醇氧化實驗 35 3.5.2. 中間產物分析 35 3.5.3. 活性物種分析 38 第四章 結果與討論 40 4.1 電化學分析 40 4.2 電解液對氧化異丙醇之影響 44 4.2.1. 空白實驗 44 4.2.2. 活性物種測量 45 4.2.3. 電解液效應 48 4.3 含氯介質中異丙醇氧化探討 52 4.3.1. 電流影響 52 4.3.2. 氯離子濃度影響 54 4.3.3. 初始pH影響 56 4.4 中間產物 58 4.4.1. 丙酮 58 4.4.2. 有機酸 61 4.4.3. 鹵乙酸 . 66 4.5 異丙醇氧化機制 68 4.5.1 氫氧自由基氧化實驗 68 4.5.2 有效氯氧化實驗 69 4.6 反應機制探討 72 第五章 結論與建議 75 5.1. 結論 75 5.2. 建議 76 參考文獻 77 | |
| dc.language.iso | zh-TW | |
| dc.subject | 異丙醇(IPA) | zh_TW |
| dc.subject | 電化學氧化法 | zh_TW |
| dc.subject | 含氯介質 | zh_TW |
| dc.subject | 活性氯物種 | zh_TW |
| dc.subject | 間接電化學氧 | zh_TW |
| dc.subject | electrochemical oxidation | en |
| dc.subject | Isopropanol(IPA) | en |
| dc.subject | active chlorine | en |
| dc.subject | indirect electrochemical oxidation | en |
| dc.title | 以電化學氧化法氧化水中異丙醇及其反應路徑之研究 | zh_TW |
| dc.title | Reaction mechanisms of the electrochemical oxidation of Isopropanol | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡景堯(Ching-Yao Hu,),高立誠(Li Cheng Ka),林進榮(Chin-Jung Lin),侯文哲(Wen-Che Hou) | |
| dc.subject.keyword | 異丙醇(IPA),電化學氧化法,含氯介質,活性氯物種,間接電化學氧, | zh_TW |
| dc.subject.keyword | Isopropanol(IPA),electrochemical oxidation,active chlorine,indirect electrochemical oxidation, | en |
| dc.relation.page | 82 | |
| dc.identifier.doi | 10.6342/NTU202000669 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-03-03 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 3.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
