請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64069完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方煒(Wei Fang) | |
| dc.contributor.author | Chi-Min Lin | en |
| dc.contributor.author | 林其民 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:28:44Z | - |
| dc.date.available | 2017-08-27 | |
| dc.date.copyright | 2012-08-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | 1. 王奕程。2008。自製無隔膜電解水應用於抑制蝴蝶蘭主要病原菌。碩士論文。臺北:國立臺灣大學生物產業機電工程學研究所。
2. 方煒,陳林祈,張明毅,康世緯,莊啟佑。2009。電解水技術應用於動植物抑菌消毒之回顧與展望。生機論文研討會。 3. 徐菁輿。2005。製備電解強酸水及電解次氯酸水與其殺菌效果之探討。碩士論文。臺北:國立臺灣大學生物產業機電工程學研究所。 4. 康世緯。2010。多用途電解滅菌自動化系統之研發與應用。碩士論文臺北:國立臺灣大學生物產業機電工程學研究所。 5. 康世緯,陳翔瀚,方煒。2010。電流式自由氯濃度感測器之開發。生機論文研討會。 6. 陳翔瀚。2011。兩段式脈衝安培法應用於自由氯感測。碩士論文。臺北:國立台灣大學生物產業機電工程學研究所。 7. 陳瑞和。1991。感測器。初版,257-280。台北:全華。 8. 鍾佩如。2010。低鹽無隔膜電解水設備之研製。碩士論文。臺北:國立台灣大學生物產業機電工程學研究所。 9. Al-Haq, M.I., J. Sugiyama, and S. Isobe. 2005. Applications of electrolyzed water in agriculture & food industries. Food Science and Technology Research 11(2): 135-150. 10. Bard A.J., and L. R. Faulkner. 2001. Electrochemical methods. Fundamentals and applications 2rd ed., P. 226-236. New York: John Wiley and Sons, Inc. 11. Barrette, W. C. J., D. M. Hannum, W. D. Wheeler, and J. K. Hurst. 1989. General mechanism for the bacterial toxicityT of hypochilorous acid abolition of ATP production. Biochemistry 28 (23): 9172-9178. 12. Berg A. V. D., Milena K. H., Bart H. V. D. S. and Nico F. D. R. 1992. Analytica Chimica Acta 269 :75-82 13. Campo, F. J. D., O. Ordeig, and F. J. Muňoz. 2005. Improved free chlorine amperometric sensor chip for drinking water applications. Analytica Chimica Acta 554 (1-2): 98-104. 14. Carter, M. T., and R. A. Osteryoung. 2006. Pulse Voltammetry. New York: Wiley. 15. Cui, X., Y. Shang, Z. Shi, H. Xin and W. Cao. 2009. Physicochemical properties and bactericidal efficiency of neutral and acidic electrolyzed water under different storage conditions. Journal of Food Engineering 91 (4): 582-586. 16. Eggins, B. R. 2002. Chemical sensors and biosensors. England:John Wiley and Sons, Inc. 17. EPA. 1983. Methods for Chemical Analysis of Water, and Wastes, Method 120.1. Washington, D.C.: EPA Environmental Protection Agency. Available at: www.epa.gov. Accessed 7 May 2012. 18. Guentzel, J., K. Liang Lam, M. A. Callan, S. A. Emmons and V. L. Dunham. 2008. Reduction of bacteria on spinach, lettuce, and surfaces in food service areas using neutral electrolyzed oxidizing water. Food Microbiology 25 (1): 36-41. 19. Harp, D. L. 2002. Current technology of chlorine analysis for water and wastewater, Hach Company, USA. 20. Huang, Y. R., H. S. Hsieh, S. Y. Lin, S. J. Lin, Y. C. Hung and D. F. Hwang. 2006. Application of electrolyzed oxidizing water on the reduction of bacterial contamination for seafood. Food control 17 (12): 987-993. 21. Huang, Y., Y. Hung, S. Hsu, Y. Huang, and D. Hwang. 2008. Application of electrolyzed water in the food industry. Food Control 19 (4): 329-345. 22. Izumi, H. 1999. Electrolyzed water as a disinfectant for fresh-cut vegetables. Journal of Food Science 64 (3): 536-539. 23. Jin, J., Y. Suzuki, N. Ishikawa, and T. Takeuchi. 2004. A miniaturized FIA system for the determination of residual chlorine in environmental water samples. Analytical Sciences 20 (1): 205-207. 24. Kishioka, S. Y., T. Kosugi and A. Yamada. 2004. Electrochemical determination of a free chlorine residual using cathodic potential-step chronocoulometry. Electroanalysis 17(8): 724-726. 25. Kissinger, P. T., and W. R. Heineman. 1983. Cyclic voltammetry. Journal of Chemical Education 60 (9): 702-706. 26. Koseki, S., K. Yoshida, K. Yoshinori, I. Seiichiro and I. Kazuhiko. 2004. Effect of mild heat pre-treatment with alkaline electrolyzed water on the efficacy of acidic electrolyzed water against Escherichia coli O157:H7 and Salmonella on Lettuce. Food Microbiology 21 (5): 559-566. 27. Kodera, F., S. Kishioka, M. Umeda, and A. Yamada. 2004. Electrochemical detection of free chlorine using anodic current. Japanese Journal of Applied Physics 43 (7A): 913-914. 28. Kodera, F., M. Umeda, and A. Yamada, 2005. Determination of free chlorine based on anodic voltammetry using platinum, gold, and glassy carbon electrodes. Anal. Chim. Acta. 547 (1-2): 293-298. 29. Lilley, M. D., J. B. Story, and R. W. Raible. 1969. The chronoamperometric determination of dissolved oxygen using membrane electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 23 (3): 425-429. 30. McPherson, L.L. 1993. Understanding ORP’s role in the disinfection process. Water Engineering & Management. 140 (11): 29-31. 31. Mehta, A., H. Shekhar, S. H. Hyun, S. Hong and H.J. Cho, 2006. A micromachined electrochemical sensor for free chlorine monitoring in drinking water. Water Science and Technology 53 (4-5): 403-410. 32. Murata, M., T. A. Ivandini, M. Shibata, S. Nomura, A. Fujishima and Y. Einaga. 2008. Electrochemical detection of free chlorine at highly boron-doped dimond electrodes. Journal of Electroanalytical Chemistry 612: 29-36. 33. Nakajima, N., T. Nakano, F. Harada, H. Taniguchi, I. Yokoyama, J. Hirose, E. Daikoku and K. Sano. 2004. Evaluation of disinfective potential of reactivated free chlorine in pooled tap water by electrolysis. Journal of microbiological methods 57 (2): 163-173. 34. Okumura, A., A. Hirabayashi, Y. Sasaki, and R. Miyake. 2001. Simple miniaturized amperometric flow cell for monitoring residual chlorine in tap water. Analytical sciences. 17 (9): 1113-1115. 35. Ordeiga, O., R. Mas, J. Gonzalo, F. J. D. Campo, F. J. Muñoz and C. D. Haro. 2005. Continuous detection of hypochlorous acid/hypochlorite for water quality monitoring and control. Electroanalysis. 17(18): 1641-1648. 36. Park, H., Y. C. Hung and R. E. Brackett. 2002. Antimicrobial effect of electrolyzed water for inactivating campylobacter jejuni during poultry washing. International Journal of Food Microbiology 72 (1-2): 77-83. 37. Pathiratne, K. A. S., S. S. Skandaraja and E. M. C. M. Jayasena. 2008. Linear sweep voltammetric determination of free chlorine in waters using graphite working electrodes. Journal of the National Science Foundation of Sri Lanka. 36(1): 25-31 38. Saputro, S., K. Takehara, K. Yoshimura, S. Matsuoka and Narsito. 2010. Differential pulse voltammetric determination of free chlorine for water disinfection process. Electroanalysis. 22 (23): 2765-2768. 39. Su, Y. C., C. Liu, and Y. C. Hung. 2007. Electrolyzed water: principles and applications. In 'New Biocides Development Conference', 309-322. Zhu, P., ed. Washington, DC: American Chemical Society. 40. Tsaousis, A. N., and C. O. Huber. 1985. Flow-injection amperometric determination of chlorine as a gold electrode. Analytica Chimica Acta. 178: 319-323. 41. White, G.C. 2010. White's handbook of chlorination and Alternative Disinfectants. 5th ed., 176-177. New Jersey: John Wiley and Sons, Inc. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64069 | - |
| dc.description.abstract | 本研究成功開發一套泛用型自由氯感測系統,適用於不同酸鹼值與電導度的溶液。使利用未修飾的之金電極透過還原電流量測自由氯濃度。首先使利用循環伏安法量感測在0.1 M NaCl為背景且酸鹼值為5.5之次氯酸鈉水溶液,其中電流密度峰值與自由氯濃度之關係成正比,線性範圍為自由氯89.3 ~ 653.3 mg/L。其次再者,使利用安培分析法感量測次氯酸鈉水溶液之自由氯濃度,其感測之還原電流密度與自由氯濃度在9 ~ 930 mg/L範圍內具有良好的線性關係(R2 > 0.996)與再現性(%RSD < 4.5),且其偵測下限為4.5 mg/L。,另外本研究也討論還原電流密度隨著不同酸鹼值與氯離子濃度的變化。
本研究依上述基礎理論開發一套泛用型自由氯感測系統,此系統包括溫度感測、酸鹼值感測、電導度感測及自由氯感測,並且實際應用於電解水產製設備中用來量測自由氯濃度。自由氯感測時間為30秒,恢復時間為120秒,而自由氯濃度感測範圍為10 ~ 800 mg/L,適用之酸鹼值與電導度的範圍分別為5.5 ~ 9與5 ~ 20 mS/cm。 | zh_TW |
| dc.description.abstract | A generic free available chlorine (FAC) monitoring system was developed in this study. The determination of free available chlorine (FAC) concentration through reduction current usingat a bare gold electrode has been demonstrated. By using cyclic voltammerty, we discovered a linear relationship between reduction peak current and FAC concentration was achieved in the range of 89.3-653.3 mg/L at pH 5.5 in 0.1 M NaCl as supporting electrolyte. Furthermore, amperometric determination of FAC performed a linear range of 9-930 mgL-1 (R2 >0.996), a good reproducibility (%RSD <4.5) and the detection limit of 4.5 mg/L. The influence on We also considered the change of reduction current density due to the variation of with different pH and chloride ion concentration was investigated.
TheA generic free chlorine monitoring system developed based on this study has been developed. The system was equipped with a temperature sensor, a pH sensor, an EC sensor, and a FAC sensor, and was successfully implemented applied within an to detecting FAC in electrolyzed water generating system to detect FAC concentration. The analysis time and a recovery time required are 30s and 120s, respectively. The system achieved to detect FAC concentration of 10 ~- 800 mg/L in the pH range from 5.5 to 9 as well as EC range from 5 to 20 mS/cm. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:28:44Z (GMT). No. of bitstreams: 1 ntu-101-R99631045-1.pdf: 1569134 bytes, checksum: 0407220a8cce7870ddddb0a4388aab4e (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 圖目錄 VII 表目錄 XI 第一章 前言與研究目的 1 第二章 文獻探討 3 2.1 電解水製程原理 3 2.1.1 有隔膜電解水 3 2.1.2 無隔膜電解水 4 2.2 電解水抑菌機制 5 2.2.1 自由氯濃度及次氯酸的比例 5 2.2.2 酸鹼值 5 2.2.3 氧化還原電位 6 2.3 電解水之抑菌應用 7 2.4 常見的自由氯感測技術 8 2.4.1 碘量滴定法 8 2.4.2 DPD比色法 8 2.4.3 DPD滴定法 10 2.5 電化學感測技術 11 2.5.1 電位分析法(Potentiometry) 12 2.5.2 電位掃描法(Voltammetry) 13 2.5.3 安培分析法(Amperometry) 18 2.6 電化學自由氯感測技術 20 2.6.1 量測氧化電流之相關研究 20 2.6.2 量測還原電流之相關研究 22 第三章 材料與方法 29 3.1 藥品與試劑 31 3.2 儀器與設備 32 3.3 比色法量測自由氯濃度 33 3.4 實驗環境與系統 34 3.4.1 恆溫水槽之建立 34 3.4.2 三極式電極系統 35 3.4.3 工作電極之清理 35 3.4 酸鹼值適用範圍-兩段式脈衝安培法量測自由氯之探討 35 3.5 循環伏安法 37 3.5.1 金電極與白金電極之比較 37 3.5.2 自由氯還原電流峰值與自由氯濃度之關係 37 3.5.3 擴散控制之試驗 38 3.6 安培分析法 38 3.6.1 酸鹼值-安培分析法量測自由氯濃度之探討 39 3.6.2 氯離子-安培分析法量測自由氯濃度之探討 41 3.7 泛用型自由氯感測系統之製作 42 3.7.1 溫度感測子系統 42 3.7.2 酸鹼值感測子系統 45 3.7.3 電導度感測子系統 46 3.7.4 自由氯濃度感測子系統 47 3.7.5 泛用型自由氯感測系統之綜合測試 48 第四章 結果與討論 52 4.1 酸鹼值適用範圍-兩段式脈衝安培法量測自由氯 52 4.2 金電極與白金電極之比較 55 4.3 自由氯還原電流峰值與自由氯濃度之關係 58 4.4 擴散控制試驗 60 4.5 安培分析法量測自由氯濃度 61 4.6 酸鹼值對安培分析法量測自由氯濃度之影響 65 4.7 氯離子濃度對安培分析法量測自由氯濃度之影響 70 4.8 溫度感測子系統之製作 72 4.9 酸鹼值感測子系統之製作 75 4.10 電導度感測子系統之製作 78 4.11 自由氯感測子系統之製作 80 4.12 自由氯感測系統之綜合測試 82 4.13 泛用型自由氯感測系統之使用 88 第五章 結論與建議 90 參考文獻 92 附錄 97 | |
| dc.language.iso | zh-TW | |
| dc.subject | 自由氯 | zh_TW |
| dc.subject | 無隔膜電解水 | zh_TW |
| dc.subject | 安培分析法 | zh_TW |
| dc.subject | 金電極 | zh_TW |
| dc.subject | electrolyzed water | en |
| dc.subject | free available chlorine | en |
| dc.subject | amperometry | en |
| dc.subject | gold electrode | en |
| dc.title | 泛用型電流式自由氯感測系統之開發 | zh_TW |
| dc.title | Development of Generic Free Chlorine Monitoring System Based on Amperometry | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳林祈(Lin-Chi Chen),黃振康(Chen-Kang Huang) | |
| dc.subject.keyword | 無隔膜電解水,自由氯,安培分析法,金電極, | zh_TW |
| dc.subject.keyword | electrolyzed water,free available chlorine,amperometry,gold electrode, | en |
| dc.relation.page | 102 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
