請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64067完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖泰慶(Tai-Ching Liao) | |
| dc.contributor.author | Chih-Yun Yu | en |
| dc.contributor.author | 游芷芸 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:28:39Z | - |
| dc.date.available | 2017-08-20 | |
| dc.date.copyright | 2012-08-20 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | Allen, K.E., and Weiss, G.J. (2010). Resistance may not be futile: microRNA biomarkers for chemoresistance and potential therapeutics. Mol Cancer Ther 9, 3126-3136.
Amaral, J.D., Xavier, J.M., Steer, C.J., and Rodrigues, C.M. (2010). Targeting the p53 pathway of apoptosis. Curr Pharm Des 16, 2493-2503. Ambros, V., Bartel, B., Bartel, D.P., Burge, C.B., Carrington, J.C., Chen, X., Dreyfuss, G., Eddy, S.R., Griffiths-Jones, S., Marshall, M., et al. (2003). A uniform system for microRNA annotation. RNA 9, 277-279. Anglicheau, D., Muthukumar, T., and Suthanthiran, M. (2010). MicroRNAs: small RNAs with big effects. Transplantation 90, 105-112. Arthofer, W., Steiner, F.M., and Schlick-Steiner, B.C. (2011). Rapid and cost-effective screening of newly identified microsatellite loci by high-resolution melting analysis. Mol Genet Genomics 286, 225-235. Artuso, R., Fallerini, C., Dosa, L., Scionti, F., Clementi, M., Garosi, G., Massella, L., Epistolato, M.C., Mancini, R., Mari, F., et al. (2012). Advances in Alport syndrome diagnosis using next-generation sequencing. Eur J Hum Genet 20, 50-57. Artzi, S., Kiezun, A., and Shomron, N. (2008). miRNAminer: a tool for homologous microRNA gene search. BMC Bioinformatics 9, 39. Bacher, U., Schnittger, S., Haferlach, C., and Haferlach, T. (2009). Molecular diagnostics in acute leukemias. Clin Chem Lab Med 47, 1333-1341. Banerjee, J., Chan, Y.C., and Sen, C.K. (2011). MicroRNAs in skin and wound healing. Physiol Genomics 43, 543-556. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. Berezikov, E. (2011). Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12, 846-860. Bhaumik, D., Scott, G.K., Schokrpur, S., Patil, C.K., Campisi, J., and Benz, C.C. (2008). Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27, 5643-5647. Bloom, D. (1954). Congenital telangiectatic erythema resembling lupus erythematosus in dwarfs; probably a syndrome entity. AMA Am J Dis Child 88, 754-758. Blow, N. (2009). Transcriptomics: The digital generation. Nature 458, 239-242. Brennecke, J., Stark, A., and Cohen, S.M. (2005a). Not miR-ly muscular: microRNAs and muscle development. Genes Dev 19, 2261-2264. Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005b). Principles of microRNA-target recognition. PLoS Biol 3, e85. Brenner, S., Johnson, M., Bridgham, J., Golda, G., Lloyd, D.H., Johnson, D., Luo, S., McCurdy, S., Foy, M., Ewan, M., et al. (2000). Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18, 630-634. Buermans, H.P., Ariyurek, Y., van Ommen, G., den Dunnen, J.T., and t Hoen, P.A. (2010). New methods for next generation sequencing based microRNA expression profiling. BMC Genomics 11, 716. Bushati, N., and Cohen, S.M. (2007). microRNA functions. Annu Rev Cell Dev Biol 23, 175-205. Calin, G.A., and Croce, C.M. (2006). MicroRNA signatures in human cancers. Nat Rev Cancer 6, 857-866. Calin, G.A., Sevignani, C., Dumitru, C.D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101, 2999-3004. Carthew, R.W. (2006). Gene regulation by microRNAs. Curr Opin Genet Dev 16, 203-208. Chen, K., and Rajewsky, N. (2006). Deep conservation of microRNA-target relationships and 3'UTR motifs in vertebrates, flies, and nematodes. Cold Spring Harb Symp Quant Biol 71, 149-156. Cheng, A.M., Byrom, M.W., Shelton, J., and Ford, L.P. (2005). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33, 1290-1297. Chi, K.R. (2008). The year of sequencing. Nat Methods 5, 11-14. Chuang, T.F., Lee, S.C., Liao, K.W., Hsiao, Y.W., Lo, C.H., Chiang, B.L., Lin, X.Z., Tao, M.H., and Chu, R.M. (2009). Electroporation-mediated IL-12 gene therapy in a transplantable canine cancer model. Int J Cancer 125, 698-707. Cullum, R., Alder, O., and Hoodless, P.A. (2011). The next generation: using new sequencing technologies to analyse gene regulation. Respirology 16, 210-222. Curtale, G., Citarella, F., Carissimi, C., Goldoni, M., Carucci, N., Fulci, V., Franceschini, D., Meloni, F., Barnaba, V., and Macino, G. (2010). An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood 115, 265-273. Das, U., and Das, A.K. (2000). Review of canine transmissible venereal sarcoma. Vet Res Commun 24, 545-556. Di Leva, G., Briskin, D., and Croce, C.M. (2012). MicroRNA in cancer: new hopes for antineoplastic chemotherapy. Ups J Med Sci 117, 202-216. Diederichs, S., and Haber, D.A. (2007). Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097-1108. Doench, J.G., and Sharp, P.A. (2004). Specificity of microRNA target selection in translational repression. Genes Dev 18, 504-511. Esquela-Kerscher, A., and Slack, F.J. (2006). Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6, 259-269. Farh, K.K., Grimson, A., Jan, C., Lewis, B.P., Johnston, W.K., Lim, L.P., Burge, C.B., and Bartel, D.P. (2005). The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310, 1817-1821. Feldman, W.H. (1929). So-Called Infectious Sarcoma of the Dog in an Unusual Anatomic Situation. Am J Pathol 5, 183-195 186. Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19, 92-105. Gan, L., Schwengberg, S., and Denecke, B. (2011). MicroRNA profiling during cardiomyocyte-specific differentiation of murine embryonic stem cells based on two different miRNA array platforms. PLoS One 6, e25809. Garzon, R., Fabbri, M., Cimmino, A., Calin, G.A., and Croce, C.M. (2006). MicroRNA expression and function in cancer. Trends Mol Med 12, 580-587. Git, A., Dvinge, H., Salmon-Divon, M., Osborne, M., Kutter, C., Hadfield, J., Bertone, P., and Caldas, C. (2010). Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16, 991-1006. Goh, L., Chen, G.B., Cutcutache, I., Low, B., Teh, B.T., Rozen, S., and Tan, P. (2011). Assessing matched normal and tumor pairs in next-generation sequencing studies. PLoS One 6, e17810. Guan, D.G., Liao, J.Y., Qu, Z.H., Zhang, Y., and Qu, L.H. (2011). mirExplorer: Detecting microRNAs from genome and next generation sequencing data using the AdaBoost method with transition probability matrix and combined features. RNA Biol 8. Han, M., Golden, A., Han, Y., and Sternberg, P.W. (1993). C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature 363, 133-140. Hernando, E. (2007). microRNAs and cancer: role in tumorigenesis, patient classification and therapy. Clin Transl Oncol 9, 155-160. Hornstein, E., and Shomron, N. (2006). Canalization of development by microRNAs. Nat Genet 38 Suppl, S20-24. Huang, Y., Shen, X.J., Zou, Q., and Zhao, Q.L. (2010). Biological functions of microRNAs. Bioorg Khim 36, 747-752. Huttenhofer, A., Schattner, P., and Polacek, N. (2005). Non-coding RNAs: hope or hype? Trends Genet 21, 289-297. Ji, J.L., and Zhang, J.S. (2006). [MicroRNA and cancer]. Zhonghua Bing Li Xue Za Zhi 35, 628-630. Jurkin, J., Schichl, Y.M., Koeffel, R., Bauer, T., Richter, S., Konradi, S., Gesslbauer, B., and Strobl, H. (2010). miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol 184, 4955-4965. Kadri, S., Hinman, V.F., and Benos, P.V. (2011). RNA deep sequencing reveals differential microRNA expression during development of sea urchin and sea star. PLoS One 6, e29217. Kanellopoulou, C., and Monticelli, S. (2008). A role for microRNAs in the development of the immune system and in the pathogenesis of cancer. Semin Cancer Biol 18, 79-88. Karlson, A.G., and Mann, F.C. (1952). The transmissible venereal tumor of dogs: observations on forty generations of experimental transfers. Ann N Y Acad Sci 54, 1197-1213. Kim, H., Bartsch, M.S., Renzi, R.F., He, J., Van de Vreugde, J.L., Claudnic, M.R., and Patel, K.D. (2011). Automated digital microfluidic sample preparation for next-generation DNA sequencing. J Lab Autom 16, 405-414. Kiriakidou, M., Nelson, P.T., Kouranov, A., Fitziev, P., Bouyioukos, C., Mourelatos, Z., and Hatzigeorgiou, A. (2004). A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18, 1165-1178. Kosaka, N., Iguchi, H., and Ochiya, T. (2010). Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101, 2087-2092. Kozomara, A., and Griffiths-Jones, S. (2011). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39, D152-157. Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., et al. (2005). Combinatorial microRNA target predictions. Nat Genet 37, 495-500. Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. (2003). Prediction of mammalian microRNA targets. Cell 115, 787-798. Li, S.C., Chan, W.C., Ho, M.R., Tsai, K.W., Hu, L.Y., Lai, C.H., Hsu, C.N., Hwang, P.P., and Lin, W.C. (2010a). Discovery and characterization of medaka miRNA genes by next generation sequencing platform. BMC Genomics 11 Suppl 4, S8. Li, Y., Vandenboom, T.G., 2nd, Wang, Z., Kong, D., Ali, S., Philip, P.A., and Sarkar, F.H. (2010b). miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res 70, 1486-1495. Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S., and Johnson, J.M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769-773. Lin, S.L., Chiang, A., Chang, D., and Ying, S.Y. (2008). Loss of mir-146a function in hormone-refractory prostate cancer. RNA 14, 417-424. Liu, J., Zheng, M., Tang, Y.L., Liang, X.H., and Yang, Q. (2011). MicroRNAs, an active and versatile group in cancers. Int J Oral Sci 3, 165-175. Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408. Lu, L.F., Boldin, M.P., Chaudhry, A., Lin, L.L., Taganov, K.D., Hanada, T., Yoshimura, A., Baltimore, D., and Rudensky, A.Y. (2010). Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 142, 914-929. Mattick, J.S. (2004). RNA regulation: a new genetics? Nat Rev Genet 5, 316-323. Montgomery, M.K., Xu, S., and Fire, A. (1998). RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci U S A 95, 15502-15507. Murgia, C., Pritchard, J.K., Kim, S.Y., Fassati, A., and Weiss, R.A. (2006). Clonal origin and evolution of a transmissible cancer. Cell 126, 477-487. O'Neill, I.D. (2011). Concise review: transmissible animal tumors as models of the cancer stem-cell process. Stem Cells 29, 1909-1914. Pan, X., Wang, Z.X., and Wang, R. (2011). MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol Ther 10, 1224-1232. Pasquinelli, A.E., Reinhart, B.J., Slack, F., Martindale, M.Q., Kuroda, M.I., Maller, B., Hayward, D.C., Ball, E.E., Degnan, B., Muller, P., et al. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86-89. Perry, M.M., Moschos, S.A., Williams, A.E., Shepherd, N.J., Larner-Svensson, H.M., and Lindsay, M.A. (2008). Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J Immunol 180, 5689-5698. Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-906. Ru, Y., Dancik, G.M., and Theodorescu, D. (2011). Biomarkers for prognosis and treatment selection in advanced bladder cancer patients. Curr Opin Urol 21, 420-427. Rusca, N., and Monticelli, S. (2011). MiR-146a in Immunity and Disease. Mol Biol Int 2011, 437301. Rust, J.H. (1949). Transmissible lymphosarcoma in the dog. J Am Vet Med Assoc 114, 10-14. Schweiger, M.R., Kerick, M., Timmermann, B., and Isau, M. (2011). The power of NGS technologies to delineate the genome organization in cancer: from mutations to structural variations and epigenetic alterations. Cancer Metastasis Rev 30, 199-210. Sood, P., Krek, A., Zavolan, M., Macino, G., and Rajewsky, N. (2006). Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A 103, 2746-2751. Stark, A., Brennecke, J., Bushati, N., Russell, R.B., and Cohen, S.M. (2005). Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell 123, 1133-1146. Taganov, K.D., Boldin, M.P., Chang, K.J., and Baltimore, D. (2006). NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103, 12481-12486. Teleman, A.A., Maitra, S., and Cohen, S.M. (2006). Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev 20, 417-422. Thomas, R., Rebbeck, C., Leroi, A.M., Burt, A., and Breen, M. (2009). Extensive conservation of genomic imbalances in canine transmissible venereal tumors (CTVT) detected by microarray-based CGH analysis. Chromosome Res 17, 927-934. Volinia, S., Calin, G.A., Liu, C.G., Ambs, S., Cimmino, A., Petrocca, F., Visone, R., Iorio, M., Roldo, C., Ferracin, M., et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103, 2257-2261. von Bubnoff, A. (2008). Next-generation sequencing: the race is on. Cell 132, 721-723. Wang, Y.S., Liao, K.W., Chen, M.F., Huang, Y.C., Chu, R.M., and Chi, K.H. (2010). Canine CXCL7 and its functional expression in dendritic cells undergoing maturation. Vet Immunol Immunopathol 135, 128-136. White, N.M., Fatoohi, E., Metias, M., Jung, K., Stephan, C., and Yousef, G.M. (2011). Metastamirs: a stepping stone towards improved cancer management. Nat Rev Clin Oncol 8, 75-84. Wieser, R., Scheideler, M., Hackl, H., Engelmann, M., Schneckenleithner, C., Hiden, K., Papak, C., Trajanoski, Z., Sill, H., and Fonatsch, C. (2010). microRNAs in acute myeloid leukemia: expression patterns, correlations with genetic and clinical parameters, and prognostic significance. Genes Chromosomes Cancer 49, 193-203. Wightman, B., Ha, I., and Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855-862. Wu, W.K., Law, P.T., Lee, C.W., Cho, C.H., Fan, D., Wu, K., Yu, J., and Sung, J.J. (2011). MicroRNA in colorectal cancer: from benchtop to bedside. Carcinogenesis 32, 247-253. Yang, Q., Lu, J., Wang, S., Li, H., Ge, Q., and Lu, Z. (2011). Application of next-generation sequencing technology to profile the circulating microRNAs in the serum of preeclampsia versus normal pregnant women. Clin Chim Acta 412, 2167-2173. Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17, 3011-3016. Zaug, A.J., Been, M.D., and Cech, T.R. (1986). The Tetrahymena ribozyme acts like an RNA restriction endonuclease. Nature 324, 429-433. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64067 | - |
| dc.description.abstract | 微小核醣核酸(microRNAs, miRNAs)是一種長約18-25個核苷酸的小分子非編碼核醣核酸(non-coding RNA),廣泛存在於真核生物中。miRNA的表現具有細胞或組織特異性,能針對特定的基因群進行轉錄後抑制作用,進而調控細胞生長發育、分化以及凋亡。近年來,多方證據顯示,miRNA的異常表現和腫瘤的發生、生長和轉移息息相關。因此,發展以miRNA為基礎的生物標誌分子作為腫瘤疾病的診斷依據、預後指標,或是治療的標的已經漸成研究趨勢。犬傳染性花柳病 (canine transmissible venereal tumor, CTVT)是一種在犬間自然發生的傳染性腫瘤疾病。以實驗室方法接種CTVT細胞或組織團塊於犬隻,建立CTVT生長週期,能夠隨時間進行觀察到發展期(progressive phase)、穩定期(stable phase)、消退期(regressive phase) 等三個顯著不同的腫瘤時期。其中,CTVT獨特的自發性消退現象,正好可以提供一套由生長發展到死亡的完整腫瘤模式以作研究用途。我們計畫以CTVT作為研究miRNA的基礎,探討參與在腫瘤發生及腫瘤抑制的相關機制。在本研究中,我們以次世代定序技術(next generation sequencing, NGS)揭示了在CTVT不同生長時期所表現的特異miRNA族群,進而挑選出顯著表現於腫瘤消退期的miRNA序列,並以即時定量聚合酶鏈鎖反應(real-time quantitative polymerase chain reaction, RT-qPCR)技術在不同個體來源樣品進行生物性重複測試,找到可能參與腫瘤自發性消退現象的miRNA,並配合CTVT轉錄體核酸探針微陣列(transcriptome microarray)及miRNA目標預測軟體,進一步找出潛在的下游調控路徑。我們期待藉由了解miRNA在腫瘤消退中所扮演的角色,在未來找到有效對抗腫瘤的方法。 | zh_TW |
| dc.description.abstract | MicroRNAs (miRNAs) are a rapidly expanding class of non-coding RNAs, which can be expressed in a cell- and tissue-specific manner. Mature miRNAs are about 18-25 nt, known to work in post-transcriptional regulations. They are active in the processes of development, apoptosis, and differentiation. Strong evidence has also emerged that miRNAs are key molecules involved in cancer initiation, progression, and metastasis. The involvement of miRNAs in all stages of cancer development opens the possibility for miRNA-based diagnosis, prognosis, or even therapeutics. Canine transmissible venereal tumor (CTVT) is a naturally occurring clonally transmissible cancer. The tumor can be transplanted by the direct contact of cancer cells or tumor tissue between individuals. Experimentally transferred CTVT have three distinct phases of growth, described as progressive, stable and regressive phases. The dramatic autoregression phenomenon in CTVT is uncommon to most kind of tumors, and it provides a complete tumor lifecycle to study for. We planned to take CTVT as an extra vision to study miRNA-mediate tumor suppression or oncogenesis. Furthermore, it has been reported that miRNAs in circulating systems are extremely stable, and have the potential to connect with distant cells. In the consideration of all the tumors grow on one dog would regress simultaneously, we believe that there are communications between tumors and host via the circulating system, and it is worth to keep an eye on sera-miRNAs. In this study, we revealed specific miRNAs possibly involved in the autoregression phenomenon in CTVT lifecycle through next generation sequencing (NGS), and confirmed the screening strategy by qRT-PCR upon biological repetitive individuals. For understanding the probable downstream regulatory network of miRNA-drived tumor life cycle, the predicted targets of these miRNAs were then integratively analyzed with the CTVT tissue gene expression data obtained from transcriptome microarray analysis. Together, the investigation of miRNAs in this autoregressive tumor model may provide valuable hints for tumor development and contribute to the therapeutic applications for cancer treatments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:28:39Z (GMT). No. of bitstreams: 1 ntu-101-R99629008-1.pdf: 6086849 bytes, checksum: 25575b8f346c9f10818ab3e28f4ce77a (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 v Abstract vi Contents viii Chapter 1. Background and Literature Review 1 1.1 microRNAs 1 1.1.1 History 1 1.1.2 Biogenesis 2 1.1.3 microRNA targetings 3 1.1.4 Biological functions of microRNAs in animals 5 1.1.5 microRNAs and cancer 6 1.1.6. The potential role of microRNA in clinical applications 16 1.2 Canine Transmissible Venereal Tumor 17 1.2.1 History 17 1.2.2 Etiology 18 1.2.3 Histopathological and Cytological Characteristics 21 1.2.4 Lifecycle 21 1.3 Next Generation Sequencing 24 1.3.1 NGS now 24 1.3.2 The principle of Solexa sequencing 26 Chapter 2. Introduction 30 Chapter 3. Material and Methods 36 3.1 Experimental CTVT model and animals 36 3.2 CTVT sample collection and preparation 37 3.3 Transmission electron microscope morphological examination 38 3.4 RAN extraction 39 3.5 The next generation sequencing for miRNA candidate screening 40 3.6 miScrip PCR system for miRNA quantification 41 3.6.1 miScript reverse transcription 41 3.6.2 miScript SYBR® Green RT-qPCR 42 3.7 RT-qPCR for mRNA 43 3.7.1 Total RNA reverse transcription 43 3.7.2 SYBR Green® RT-qPCR 44 3.8 Flow Cytometry analysis of cell surface phenotype 46 3.9 Statistical Analysis 46 Chapter 4. Results 47 4.1 The establishment & characterization of the CTVT autoregressive tumor model 47 4.2 Small RNA library generation, sequencing, and primary analysis 48 4.3 Identification and quantification of annotated miRNAs 49 4.4 miR-146a and miR-155 are up-regulate in the regressive phase of CTVT 50 4.5 The determination of potentially downstream targeting candidates 51 Chapter 5. Discussion 54 Table 63 Table 1 Human cancer related microRNAs 10 Table 2 miScrip PCR program 43 Table 3 Reverse transcription protocol 44 Table 4 qPCR primer list (1) 45 Table 5 qPCR primer list (2) 45 Table 6 Construction of miRNA profile 63 Table 7 miRNAs differently expressed between P and R phase 150 Table 8 Canine miRNA candidates 153 Table 9 Sequences of canine miRNA candidates 154 Table 10 miRNA predicted target list 155 Table 11 Relative quantities of predicted target detected by microarray 156 Table 12 The predicted target list 157 Table 13 The predicted target list (2) 158 Figures 159 Fig. 1 Schematic overview of the biogenesis of mammalian miRNA 3 Fig. 2 The scheme diagram of the correlation between aberrant miRNA expression and carcinogenesis 9 Fig. 3 Tech Summary: Illumina'sSolexa Sequencing Technology 28 Fig. 4 RNA quality control performed on capillary electrochromatography 40 Fig. 5 Experimental transferred CTVT growth curve 159 Fig. 6a The histopathological image of CTVT during the progressive phase. 160 Fig. 6b The histopathological image of CTVT during the stable phase. 161 Fig. 6c The histopathological image of CTVT during the regression phase. 162 Fig. 7a The TEM image of CTVT during the progression phase. 163 Fig. 7b The TEM image of CTVT during the regression phase. 163 Fig. 8 The length distribution of small RNA in CTVT is average in 22 nt 164 Fig. 9 The percentages of miRNAs detected in P and R phase sample 165 Fig.10 The NGS data analysis pipeline 166 Fig.11 Differential miRNA expression between P and R phase CTVT 167 Fig.12 Differential canismiRNA expression between P and R phase CTVT 168 Fig.13a miR-145a and miR-155 were up-regulat in R phase CTVT tissue 169 Fig.13b miR-145a and miR-155 were up-regulat in R phase cells 170 Fig.14 The scheme diagram of potential miRNA target determination 171 Fig.15 Genes expressed equally in two phases confirmed by qPCR 172 Fig.16 The mRNA level of predicted targets 173 Reference 174 | |
| dc.language.iso | en | |
| dc.subject | 微小核醣核酸 | zh_TW |
| dc.subject | 癌症 | zh_TW |
| dc.subject | 犬傳染性花柳性腫瘤 | zh_TW |
| dc.subject | 次世代定序技術 | zh_TW |
| dc.subject | 生物性標誌 | zh_TW |
| dc.subject | cancer | en |
| dc.subject | CTVT | en |
| dc.subject | NGS | en |
| dc.subject | biomarker | en |
| dc.subject | miRNA | en |
| dc.title | 以次世代定序技術揭示表現於自發性消退腫瘤模式之特定microRNAs | zh_TW |
| dc.title | Deep-Sequencing Reveals Specific microRNAs in An Autoregressive Tumor Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林辰栖(Chen-Si Lin) | |
| dc.contributor.oralexamcommittee | 王愈善(Yu-Shan Wang) | |
| dc.subject.keyword | 微小核醣核酸,癌症,犬傳染性花柳性腫瘤,次世代定序技術,生物性標誌, | zh_TW |
| dc.subject.keyword | miRNA,cancer,CTVT,NGS,biomarker, | en |
| dc.relation.page | 180 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 5.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
