Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64065
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳銘憲(Ming-Syan Chen)
dc.contributor.authorPing-Han Sohen
dc.contributor.author蘇評翰zh_TW
dc.date.accessioned2021-06-16T17:28:35Z-
dc.date.available2012-08-19
dc.date.copyright2012-08-19
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citation[1] Anatomy of facebook. https://www.facebook.com/note.php?note_
id=10150388519243859.
[2] Facebook. https://www.facebook.com/.
[3] Plurk. https://www.plurk.com/.
[4] Twitter. https://www.twitter.com/.
[5] Term-weighting approaches in automatic text retrieval. Information Processing and
Management, 24(5):513 – 523, 1988.
[6] A. Anagnostopoulos, R. Kumar, and M. Mahdian. Influence and correlation in social
networks. In Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data mining, pages 7–15, 2008.
[7] C.-m. Au Yeung and T. Iwata. Capturing implicit user influence in online social
sharing. In Proceedings of the 21st ACM conference on Hypertext and hypermedia,
pages 245–254, 2010.
[8] J.-L. Duan, S. Prasad, and J.-W. Huang. Discovering unknown but interesting items
on personal social network. In Proceedings of the 16th PAKDD Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pages 145–156. 2012.
[9] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework
for performing collaborative filtering. In Proceedings of the 22nd ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 230–237,
1999.
[10] T. Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd
ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 50–57, 1999.
[11] H. Kautz, B. Selman, and M. Shah. Referral web: combining social networks and
collaborative filtering. Communications of the ACM, 40(3):63–65, 1997.
[12] L. R. Keith N. Hampton, Lauren Sessions Goulet and K. Purcell. Social networking
sites and our lives. Technical report, Pew Research Center’s Internet & American
Life Project, 2011.
[13] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data mining, pages 137–146, 2003.
[14] Y. Koren. Collaborative filtering with temporal dynamics. In Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data
mining, pages 447–456, 2009.
[15] D. Lowe. Object recognition from local scale-invariant features. In The Proceedings
of the 7th IEEE International Conference on Computer Vision, volume 2, pages 1150
–1157, 1999.
[16] H. Ma, I. King, and M. R. Lyu. Learning to recommend with social trust ensemble.
In Proceedings of the 32nd ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 203–210, 2009.
[17] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with social
regularization. In Proceedings of the 4th ACM WSDM International Conference on
Web Search and Data Mining, pages 287–296, 2011.
[18] P. Massa and P. Avesani. Trust-aware recommender systems. In Proceedings of the
2007 ACM conference on Recommender systems, pages 17–24, 2007.
[19] N. Nori, D. Bollegala, and M. Ishizuka. Interest Prediction on Multinomial , Time-
Evolving Social Graphs. Proceedings of the Twenty-Second International Joint Conference
on Artificial Intelligence, pages 2507–2512, 2011.
[20] M. Park, J. Jin, and L. Wilson. Fast content-based image retrieval using quasi-gabor
filter and reduction of image feature dimension. In Proceedings of the Fifth IEEE
Southwest Symposium on Image Analysis and Interpretation, pages 178 –182, 2002.
[21] M. Pazzani and D. Billsus. Content-based recommendation systems. In The Adaptive
Web, volume 4321, pages 325–341. 2007.
[22] J. Tang, J. Sun, C. Wang, and Z. Yang. Social influence analysis in large-scale
networks. In Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data mining, pages 807–816, 2009.
[23] Q. Wang and Q. Deng. Catching preference drift with initiators in social network.
In Proceedings of the 17th IEEE ICPADS International Conference on Parallel and
Distributed Systems, pages 829 –834, 2011.
[24] L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, and J. Sun. Temporal recommendation
on graphs via long- and short-term preference fusion. In Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge Discovery and
Data mining, pages 723–732, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64065-
dc.description.abstract近年來,線上社群網路日益盛行。活躍的使用者每天透過這些網路,花費數小時互動,而在短時間內創造了驚人的資料量。這些大量產生的新資訊,使得使用者往往需要消耗許多時間才能在其中找到感興趣的資訊。當使用者透過行動裝置來瀏覽社群網路時,更加劇了這樣的問題。為了幫助使用者有效率地發掘感興趣的資訊,我們提出了一個全新的推薦方法。這個方法利用了個別使用者回應訊息的行為特性來進行推薦。此外,我們的方法亦被證明可以輕易地拓展到處理使用者興趣隨時間變化的推薦問題。我們研究了當前最受歡迎的線上社群網路上,使用者回應訊息的行為特性,並在實驗中證明了我們提出的方法較該社群網路當前的推薦系統有顯著的進步。zh_TW
dc.description.abstractIn recent years, online social networks have been dramatically expanded. Active users spend hours communicating with each other via these networks such that an enormous amount of data is created every second.
The tremendous amount of newly created information costs users much time to discover interesting messages from their online social feeds. The problem is even exacerbated if the users access these networks via mobile devices. To help users discover interesting messages efficiently,
in this paper, we propose a new approach to recommend interesting messages for each user by exploiting the user's response behaviour. The proposed approach is then demonstrated to be easily extended to deal with the temporal recommendation. We investigate the response behaviour on the most popular social network, and the experimental results show that the proposed approach provides obvious improvement over the current online social feeds.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:28:35Z (GMT). No. of bitstreams: 1
ntu-101-R99942042-1.pdf: 800880 bytes, checksum: 50774b09334d6ee810de6d34aabbadd8 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgments ii
中文摘要 iii
Abstract iv
Contents v
List of Figures vii
List of Tables viii
1 Introduction 1
2 Related Work 5
2.1 Recommendation Systems . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Social Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Methodology 7
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Score Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Message Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Influence from Responding User Set . . . . . . . . . . . . . . . . . . . . 12
3.5 Determine Value of p . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 Modification for Temporal Recommendation . . . . . . . . . . . . . . . 18
4 Experiments 20
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Static Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Temporal Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Time Efficiency for Online Recommendation . . . . . . . . . . . . . . . 28
5 Conclusion and Future Works 30
Bibliography 31
dc.language.isoen
dc.subject使用者回應行為zh_TW
dc.subject線上社群網路zh_TW
dc.subject推薦系統zh_TW
dc.subjectRecommendation Systemen
dc.subjectOnline Social Networksen
dc.subjectUser Response Behaviouren
dc.title利用使用者回應行為之線上社群網路訊息推薦系統zh_TW
dc.titleA Recommendation System for Online Social Feeds by Exploiting User Response Behaviouren
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林永松(Yeong-Sung Lin),呂俊賢,曾祺堯(Chi-Yao Tseng)
dc.subject.keyword推薦系統,線上社群網路,使用者回應行為,zh_TW
dc.subject.keywordRecommendation System,Online Social Networks,User Response Behaviour,en
dc.relation.page33
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
782.11 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved