請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64060
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張煥宗(Huan-Tsung Chang) | |
dc.contributor.author | Yu-Meng Ou | en |
dc.contributor.author | 歐育孟 | zh_TW |
dc.date.accessioned | 2021-06-16T17:28:23Z | - |
dc.date.available | 2020-03-05 | |
dc.date.copyright | 2020-03-05 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-03-03 | |
dc.identifier.citation | 1. Hillenkamp F, Karas M, Beavis RC, Chait BT. Anal Chem. 1991; 63:1193A–1203A.
2. Fenn J, Mann M, Meng C, Wong S, Whitehouse C. Science. 1989; 246:64–71. 3. Karas M, Bahr U, Dülcks T. Fresenius J Anal Chem. 2000; 366:669–676. 4. Fabrik I, Cmelik R, Bobalova J. Int J Mass spectrom. 2012; 309:88–96. 5. Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M. Anal Bioanal Chem. 2010; 397:3457–3481. 6. Walker SH, Lilley LM, Enamorado MF, Comins DL, Muddiman DC. J Am Soc Mass Spectrom. 2011; 22:1309–1317. 7. Heiss C, Wang Z, Azadi P. Rapid Commun Mass Spectrom. 2011; 25:774–778. 8. Zaia J. Chem Biol. 2008; 15:881–92. 9. Budnik BA, Haselmann KF, Zubarev RA. Chem Phys Lett. 2001; 342:299–302 10. Wuhrer M. Glycoconj J. 2013; 30:11–22. 11. Park Y, Lebrilla CB. Mass Spectrom Rev. 2005; 24:232–264. 12. Yang B, Solakyildirim K, Chang Y, Linhardt RJ. Anal Bioanal Chem. 2011; 399:541–557. 13. Wan H, Yan J, Yu L, Sheng Q, Zhang X, Xue X, Li X, Liang X. Analyst. 2011; 136:4422–30. 14. Cody R, Burnier R, Freiser B. Anal Chem. 1982; 54:96–101. 15. Liu H, Hakansson K. Int J Mass spectrom. 2011; 305:170–177. 16. Alvarez-Manilla G, Warren NL, Abney T, Atwood J, Azadi P, York WS, Pierce M, Orlando R. Glycobiology. 2007; 17:677–687. 17. Auray-Blais C, Bherer P, Gagnon R, Young SP, Zhang HH, An Y, Clarke JTR, Millington DS. Mol Genet Metab. 2011; 102:49–56. 18. Orlando R, Lim JM, Atwood JA, Angel PM, Fang M, Aoki K, Alvarez-Manilla G, Moremen KW, York WS, Tiemeyer M, Pierce M, Dalton S, Wells L. J Proteome Res. 2009; 8:3816–3823. 19. Li J, Li X, Guo Z, Yu L, Zou L, Liang X. Analyst. 2011; 136:4075–82. 20. Grass J, Pabst M, Kolarich D, Poeltl G, Leonard R, Brecker L, Altmann F. J Biol Chem. 2011; 286:5977–5984. 21. Karlsson NG, Schulz BL, Packer NH, Whitelock JM. J Chromatogr B Analyt Technol Biomed Life Sci. 2005; 824:139–147.Gill VL, Wang Q, Shi X, Zaia J. Anal Chem. 2012; 84:7539–7546. 22. Gaye MM, Valentine SJ, Hu Y, Mirjankar N, Hammoud ZT, Mechref Y, Lavine BK, Clemmer DE. J Proteome Res. 2012; 11:6102–10. 23. Woodin CL, Maxon M, Desaire H. Analyst. 2013; 138:2793–803. 24. Dallas DC, Martin WF, Hua S, German JB. Brief Bioinform. 2013; 14:361–74. 25. Desaire H. Mol Cell Proteomics. 2013; 12:893–901. 26. Harvey DJ, Scarff CA, Edgeworth M, Crispin M, Scanlan CN, Sobott F, Allman S, Baruah K, 27. 27. Wu CL, Wang CC, Lai YH, Lee H, Lin JD, Lee YT, Wang YS. Anal Chem. 2013; 85:3836–3841. 28. Ou YM, Kuo SY, Lee H, Chang HT, Wang YS. J. Vis. Exp. 2018; 137, e57660. 29. Lee H, Lai YH, Ou YM, Tsao CW, Jheng YJ, Kuo SY, Chang HT, Wang YS. Anal. Chim. Acta. 2017; 994, 49-55. 30. Jensen PH, Mysling S, Hojrup P, Jensen ON. Methods Mol Biol. 2013; 951:131–44. 31. Selman MH, Hemayatkar M, Deelder AM, Wuhrer M. Anal Chem. 2011; 83:2492–9. 32. Kronewitter SR, De Leoz ML, Strum JS, An HJ, Dimapasoc LM, Guerrero A, Miyamoto S, Lebrilla CB, Leiserowitz GS. Proteomics. 2012; 12:2523–38. 33. Artemenko NV, McDonald AG, Davey GP, Rudd PM. Methods Mol Biol. 2012; 899:325–50. 34. Gaye MM, Valentine SJ, Hu Y, Mirjankar N, Hammoud ZT, Mechref Y, Lavine BK, Clemmer DE. J Proteome Res. 2012; 11:6102–10. 35. Ruhaak LR, Miyamoto S, Kelly K, Lebrilla CB. Anal Chem. 2012; 84:396–402. 36. Han L, Costello CE. J Am Soc Mass Spectrom. 2011; 22:997–1013. 37. Hersberger KE, Håkansson K. Anal Chem. 2012; 84:6370–6377. 38. Harvey DJ, Rudd PM. Int J Mass spectrom. 2011; 305:120–130. 39. Kailemia MJ, Li L, Ly M, Linhardt RJ, Amster IJ. Anal Chem. 2012; 84:5475–5478. 40. Jiao J, Zhang H, Reinhold VN. Int J Mass spectrom. 2011; 303:109–117. 41. Reinhold V, Zhang H, Hanneman A, Ashline D. Mol Cell Proteomics. 2013; 12:866–873. 42. Little DP, Speir JP, Senko MW, O’Connor PB, McLafferty FW. Anal Chem. 1994; 66:2809–2815. 43. Budnik BA, Haselmann KF, Zubarev RA. Chem Phys Lett. 2001; 342:299–302. 44. Herron WJ, Goeringer DE, McLuckey SA. J Am Chem Soc. 1995; 117:11555–11562. 45. Zubarev RA, Kelleher NL, McLafferty FW. J Am Chem Soc. 1998; 120:3265–3266. 46. Kenny DT, Gaunitz S, Hayes CA, Gustafsson A, Sjoblom M, Holgersson J, Karlsson NG. Methods Mol Biol. 2013; 988:145–67 47. Aldredge DL, Geronimo MR, Hua S, Nwosu CC, Lebrilla CB, Barile D. Glycobiology. 2013; 23:664–676. 48. Kolarich D, Jensen PH, Altmann F, Packer NH. Nat Protoc. 2012; 7:1285–98. 49. Marino K, Lane JA, Abrahams JL, Struwe WB, Harvey DJ, Marotta M, Hickey RM, Rudd PM. Glycobiology. 2011; 21:1317–1330. 50. Zauner G, Deelder AM, Wuhrer M. Electrophoresis. 2011; 32:3456–66. 51. Huang Y, Shi X, Yu X, Leymarie N, Staples GO, Yin H, Killeen K, Zaia J. Anal Chem. 2011; 83:8222–8229. 52. Zhao Y, Jia W, Wang J, Ying W, Zhang Y, Qian X. Anal Chem. 2011; 83:8802–8809. 53. Rohmer M, Baeumlisberger D, Stahl B, Bahr U, Karas M. Int J Mass spectrom. 2011; 305:199–208. 54. Harvey DJ, Bateman RH, Green MR. J Mass Spectrom. 1997; 32:167–187. 55. Zaia J, Costello CE. Anal Chem. 2003; 75:2445–2455. 56. Walker SH, Lilley LM, Enamorado MF, Comins DL, Muddiman DC. J Am Soc Mass Spectrom. 2011; 22:1309–1317. 57. Karas M, Bahr U, Dülcks T. Fresenius J Anal Chem. 2000; 366:669–676. 58. Domann P, Spencer DIR, Harvey DJ. Rapid Commun Mass Spectrom. 2012; 26:469–479. 59. Orlando R. Methods Mol Biol. 2013; 951:197–215. 60. Higel F, Demelbauer U, Seidl A, Friess W, Soergel F. Anal Bioanal Chem. 2013; 405:2481–2493. 61. Gimenez E, Sanz-Nebot V, Rizzi A. Anal Bioanal Chem. 2013; 405:7307–19. 62. Ruhaak LR, Deelder AM, Wuhrer M. Anal Bioanal Chem. 2009; 394:163–74. 63. Dreyfuss JM, Jacobs C, Gindin Y, Benson G, Staples GO, Zaia J. Anal Bioanal Chem. 2011; 399:727–735. 64. Fenn LS, McLean JA. PCCP. 2011; 13:2196–2205. 65. Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson ML, Thornquist M, Winget M, Yasui Y. J Natl Cancer Inst. 2001; 93:1054–61. 66. Neville DC, Alonzi DS, Butters TD. J Chromatogr A. 2012; 1233:66–70. 67. Domon, B., Costello, C.E. Glycoconjugate J.1988; 5, 397–409. 68. Kailemia MJ, Li L, Xu Y, Liu J, Linhardt RJ, Amster IJ. Mol Cell Proteomics. 2013; 12:979–90. 69. Devakumar A, Thompson MS, Reilly JP. Rapid Commun Mass Spectrom. 2005; 19:2313–20. 70. Wu S, Grimm R, German JB, Lebrilla CB. J Proteome Res. 2011; 10:856–868. 71. Hogan JM, Pitteri SJ, Chrisman PA, McLuckey SA. J Proteome Res. 2005; 4:628–632. 72. Nairn AV, York WS, Harris K, Hall EM, Pierce JM, Moremen KW. J Biol Chem. 2008; 283:17298–17313. 73. Bowman MJ, Zaia J. Anal Chem. 2010; 82:3023–3031. 74. Cai YH, Lai YH, Wang YS. J. AM. SOC. MASS SPECTR. 2015; 26:1722-1731. 75. Stephens WE. Phys. Rev. 1946; 69:691. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64060 | - |
dc.description.abstract | 本論文主要致力於構建一完整之分析流程以改善基質輔助雷射脫附游離質譜法 (MALDI MS) 於生物醣分子之分析能力。第一章從樣品製備著手,介紹醣分子之基本架構及質譜分析方法,詳細討論了於 MALDI 中,常用於分析醣分子之樣品製備方法,並對其製備流程進行最佳化,以獲得最高之偵測靈敏度。
第二章探討一醣分子裂解之新技術,本裂解技術於樣品製備完成後進行光處理反應,待光處理結束後再進入質譜儀進行分析,因此可適用於所有配置 MALDI 游離源之質譜儀。與商業儀器提供之常規裂解技術相比,本方法之簡易性更高、泛用性更廣。而本實驗也將此裂解技術應用至多種醣分子樣品,結果表明本技術可有效地獲得醣分子之母離子及其裂解片段離子,其中包含豐富的醣環內裂解之資訊,對醣分子結構鑑定極有助益。此外,本實驗也選定多個醣分子異構物,透過本裂解技術加以分辨,更加展現了本技術對醣分子異構物辨別之優異性能。 第三章針對飛行時間 (TOF) 質譜儀之儀器架構進行詳細討論,透過理論模型,重新檢視傳統線性 TOF 質譜儀之儀器架構,進而改善其設計缺陷。根據此理論模型,本實驗亦建構出一優化之線性 MALDI TOF 質譜儀來加以驗證,透過系統性地最佳化各個實驗參數,可有效地獲得高品質且具高質量解析度之質譜圖。本研究也將此線性 MALDI TOF 質譜儀應用於多種不同質量之生物分子樣品,結果顯示此質譜儀具有高質量解析性能及高動態範圍能力。本實驗不僅驗證了本理論模型,並且證實經優化之線性 TOF 質譜儀可成為具潛力之生物分析工具。 | zh_TW |
dc.description.abstract | This thesis is dedicated to evaluating the potential and the utility of matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for biomolecular analysis, particularly for carbohydrates. Chapter 1 introduces the general functions and roles of carbohydrates as well as the nomenclatures for their representation. The fundamentals of mass spectrometry are also mentioned in detail. Furthermore, the commonly used sample preparation methods for carbohydrate analyses in MALDI are also discussed and optimized for acquiring the best ion sensitivity. The present procedures with excellent ionization efficiency are then applied on several important native carbohydrate analytes, their results are carefully compared and discussed.
Chapter 2 introduces a new concept of fragment-based analyses for carbohydrates in MALDI MS. In contrast to regular fragmentation method provided by commercialized instrument, the present fragmentation strategy is suitable for all MALDI-based instrument. The fragmentation technique introduced herein presents as a sample pretreatment method which decomposing the analytes prior to the analysis of mass spectrometry. By this strategy, the intact ions and their fragments of carbohydrate can be effectively obtained and can generate unambiguous fingerprints for characterization. This allows reliable and fast identification of common carbohydrate motifs. In addition, six native carbohydrate isomers were investigated to systematically examine which structural elements of carbohydrates can be differentiated. Furthermore, the general experimental aspects that need to be considered during this analysis are discussed in detail. Chapter 3 discusses the instrumental aspects for enhancing mass resolving power (Rm) in linear TOF MS. Different instrumental factors were carefully optimized according to a comprehensive calculation model to extend the ability and performance for biomolecule analyses. The established linear MALDI TOF MS was then applied to several important biomolecules with diverse sizes. Complex standard sample such as bacteria test sample (BTS) was also tested to reveal the high dynamic range of the instrument. This shows the robustness of the present approach and that the lab-built linear MALDI TOF MS can be a versatile and highly valuable analytical tool for carbohydrate and other bio-analyses. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:28:23Z (GMT). No. of bitstreams: 1 ntu-109-D03223114-1.pdf: 17462592 bytes, checksum: 763e06efabc5c306616331c9ef939b88 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | Content
中文摘要 I ABSTRACT III LIST OF ABBREVIATIONS V MOTIVATIONS AND AIMS OF THE THESIS 1 1. CARBOHYDRATE ANALYSES BY MASS SPECTROMETRY 4 1.1 OVERVIEW 4 1.2 INTRODUCTION 5 1.2.1 The Roles of Carbohydrate in Life 5 1.2.2 Carbohydrates 6 1.2.3 Glycosylation 10 1.2.3 Analysis of Carbohydrates by Mass Spectrometry 10 1.2.4 The Basic of Mass Spectrometry 12 1.2.5 Commonly Used Ionization Methods for Carbohydrates in Mass Spectrometry 14 1.2.6 Carbohydrate Analysis by MALDI MS 15 1.2.7 Derivatization Techniques for Carbohydrate Analysis 17 1.2.8 Finding Factors to Enhance the Ion Yield for Carbohydrates in MALDI 18 1.3 EXPERIMENTAL DETAILS 20 1.3.1 Materials 20 1.3.2 Sodium-enhanced DHB Matrix 20 1.3.3 Drying Chamber for Dried Droplet and Recrystallization 21 1.3.4 Vacuum-Dried Method 22 1.3.5 Analysis of Sample Morphology 23 1.4 RESULTS AND DISCUSSION 24 1.4.1 Different Sample Preparation Methods 24 1.4.2 DHB System 25 1.4.3 THAP System 28 1.5 SUMMARY 33 2. THE FRAGMENTATION INDUCED BY QTH LIGHT FOR CARBOHYDRATE SEQUENCING 34 2.1 OVERVIEW 34 2.2 INTRODUCTION 35 2.2.1 Structural Information for Carbohydrate Characterization 35 2.2.1 Carbohydrate Characterization by Mass Spectrometry 38 2.2.2 Low Energy Fragmentation 41 2.2.3 Electron Transfer Dissociation (ETD) 42 2.2.4 Photodissociation 42 2.2.5 Infrared Multiphoton Dissociation (IRMPD) 43 2.3 EXPERIMENTAL DETAILS 45 2.3.1 Materials 45 2.3.2 MALDI Sample Treated by QTH Light Source 45 2.3.3 Sample Preparation 47 2.3.4 Sample Substrate Heating Experiment 48 2.3.5 Sample Substrates 48 2.3.6 Analytes in Capillary Treated by QTH Light 49 2.3.7 Mass Spectrometry 49 2.3.8 Thin-layer Chromatography (TLC) for Carbohydrate Samples After QTH Treatment 50 2.4 RESULTS AND DISCUSSION 51 2.4.1 Optimization of the QTH Exposure Period 51 2.4.2 Sample Substrate Heating Experiment 55 2.4.3 TLC for Carbohydrate Treated by QTH 55 2.4.4 Sample Substrate 57 2.4.5 GH 58 2.4.6 Hexasaccharide Isomers 61 2.4.7 Trisaccharide and Disaccharide Isomers 67 2.4.8 The Potential Energy Surface Calculation for Disaccharide Isomers 69 2.5 SUMMARY 72 3. EXPERIMENTAL VALIDATIONS OF HIGH RESOLUTION LINEAR TOF MASS SPECTROMETER BASED ON COMPREHENSIVE CALCULATION MODEL 74 3.1 OVERVIEW 74 3.2 INTRODUCTION 75 3.2.1 Fundamental of Time-of-Flight Mass Analyzer 75 3.2.2 Comprehensive Calculation for High Resolution Linear TOF MS 78 3.3 EXPERIMENTAL DETAILS 79 3.3.1 The Optimized Linear TOF Mass Spectrometer 79 3.3.2 Materials 84 3.3.3 Data Acquisition 86 3.3.4 Signal Processing (Impedance Matching Between MCP and Oscilloscope) 87 3.4 RESULTS AND DISCUSSION 89 3.4.1 MCP Optimization 89 3.4.2 Mass gating optimization 89 3.4.3 Extraction Delay 93 3.4.6 Mass Spectra for Carbohydrates Treated by QTH Method 101 3.4.7 Bacteria Test Sample (BTS) 105 3.5 SUMMARY 106 3.7 CONCLUSION AND PERSPECTIVE 108 REFERENCES 110 | |
dc.language.iso | en | |
dc.title | 高質量解析基質輔助雷射脫附飛行時間質譜儀之發展及其於醣分子分析之應用 | zh_TW |
dc.title | The Study of Effective Approaches for Carbohydrate Analysis in Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 王亦生(Yi-Sheng Wang) | |
dc.contributor.oralexamcommittee | 陳玉如(Yu-Ju Chen),林俊利(Jung-Lee Lin),陳逸然(Yet-Ran Chen) | |
dc.subject.keyword | 基質輔助雷射脫附游離飛行時間質譜法,醣分子,離子豐度,醣分子結構鑑定,醣分子定序,線性飛行時間質譜法,高質量解析, | zh_TW |
dc.subject.keyword | MALDI TOF MS,carbohydrate,ion abundance,carbohydrate characterization,sequencing,linear TOF,high resolving power, | en |
dc.relation.page | 116 | |
dc.identifier.doi | 10.6342/NTU202000526 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-03-03 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 17.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。