請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64054完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐百輝 | |
| dc.contributor.author | Keng-Fan Lin | en |
| dc.contributor.author | 林耿帆 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:28:09Z | - |
| dc.date.available | 2013-08-30 | |
| dc.date.copyright | 2012-08-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | Axelsson, P., 1999. Processing of laser scanner data--algorithms and applications. ISPRS Journal of Photogrammetry and Remote Sensing 54 (2-3):138-147.
Bartels, M., and H. Wei, 2006. Maximum Likelihood Classification of LIDAR Data incorporating multiple co-registered Bands. In 4th International Workshop on Pattern Recognition in Remote Sensing in conjunction with the 18th International Conference on Pattern Recognition. Hong Kong, China: Citeseer. Bentley, J.L., 1975. Multidimensional binary search trees used for associative searching. Communications of the ACM 18 (9):509-517. Blaschke, T., C. Burnett, and A. Pekkarinen, 2006. Image segmentation methods for object-based analysis and classification. Remote sensing image analysis: Including the spatial domain:211-236. Boykov, Yuri, and Gareth Funka-Lea, 2006. Graph Cuts and Efficient N-D Image Segmentation. Int. J. Comput. Vision 70 (2):109-131. Brattberg, O., and G. Tolt, 2008. Terrain Classification Using Airborne LiDAR Data and Aerial Imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 37:261-266. Carlberg, M., P. Gao, G. Chen, and A. Zakhor, 2009. Classifying urban landscape in aerial LiDAR using 3D shape analysis. In Proceedings of the 16th IEEE international conference on Image processing. Cairo, Egypt: IEEE Press. Charaniya, AP., R. Manduchi, and SK. Lodha, 2004. Supervised Parametric Classification of Aerial LiDAR Data. In Proceedings of the IEEE Workshop on Real Time 3D Sensor and Their Use. Washington, DC, USA: IEEE Computer Society. CSIE NTNU, 2012. k-Dimensional Tree. URL: http://www.csie.ntnu.edu.tw/~u91029/ PointInterval.html (last date accessed: 3 July 2012). Definiens, 2007. Developer 7 - User Guide. Munchen,Germany: Definiens AG. Douillard, B., J. Underwood, N. Kuntz, V. Vlaskine, A. Quadros, P. Morton, and A. Frenkel, 2011. On the segmentation of 3D LIDAR point clouds. In 2011 IEEE International Conference on Robotics and Automation (ICRA). Fischler, M.A., and R.C. Bolles, 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24 (6):381-395. Gamanya, R., P. De Maeyer, and M. De Dapper, 2007. An automated satellite image classification design using object-oriented segmentation algorithms: A move towards standardization. Expert Systems with Applications 32 (2):616-624. Golovinskiy, A., and T. Funkhouser, 2009. Min-cut based segmentation of point clouds. In 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops). Haralick, R.M., K. Shanmugam, and I. Dinstein, 1973. Textural features for image classification. Systems, Man and Cybernetics, IEEE Transactions on 3 (6):610-621. Haralick, R.M., and L.G. Shapiro, 1985. Image segmentation techniques. Computer Vision, Graphics, and Image Processing 29 (1):100-132. Hojjatoleslami, S. A., and J. Kittler, 1998. Region growing: A new approach. IEEE Transactions on Image Processing 7 (7):1079-1084. Hoppe, Hugues, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle, 1992. Surface reconstruction from unorganized points. In Proceedings of the 19th annual conference on Computer graphics and interactive techniques: ACM. Hough, P.V.C, 1962. Method and means for recognizing complex patterns. US Patent, no. 3069654. Isenburg, M., 2012. Tools for LiDAR Processing,URL:http://www.cs.unc.edu/~isenburg /lastools/ (last date accessed:30 July 2012). Lodha, S.K., D.M. Fitzpatrick, and D.P. Helmbold, 2007. Aerial lidar data classification using expectation-maximization. In In Proceedings of the SPIE Conference on Vision Geometry XIV. Ma, Y., S. Worrall, and A. M. Kondoz, 2008. 3D Point Segmentation with critical point and fuzzy clustering. Medioni, G., M.S. Lee, and C.K. Tang, 2000. A computational framework for segmentation and grouping: Elsevier Science. Melkumyan, N., 2009. Surface-based Synthesis of 3D Maps for Outdoor Unstructured Environments. Australian Centre for Field Robotics. Mockler, R. J., 1992. Developing Knowledge-based Systems Using an Expert System Shell. New York: Macmillan Publishing Company. Moosmann, F., O. Pink, and C. Stiller, 2009. Segmentation of 3D lidar data in non-flat urban environments using a local convexity criterion. In 2009 IEEE Intelligent Vehicles Symposium. Moussa, A. , and N. El-Sheimy, 2010. Automatic Classification And 3D Modeling Of Lidar Data. In Proceedings of the ISPRS Commission III symposium - PCV 2010, edited by N. Paparoditis, M. Pierrot-Deseilligny, C. Mallet and O. Tournaire. Saint-Mandé, France. Myatt, D., P.H.S Torr, J.M. Bishop, R. Craddock, and S. Nausto, 2002. NAPSAC: High noise, high dimensional robust estimation. BMVC, Computer Vision Tools:458-467. Oruc, M., AM Marangoz, and G. Buyuksalih, 2004. Comparison of pixel-based and object-oriented classification approaches using Landsat-7 ETM spectral bands. In ISPRS 2004 Annual Conference. Istanbul,Turkey. Overby, J., L. Bodum, E. Kjems, and PM Iisoe, 2004. Automatic 3D building reconstruction from airborne laser scanning and cadastral data using Hough transform. International Archives of Photogrammetry and Remote Sensing 35 (Part B3):298-303. Point Cloud Library, 2012. Documentation for Module Search, URL: http://docs. pointclouds.org/trunk/group__search.html (last date accessed: 3 July 2012). Priestnall, G., J. Jaafar, and A. Duncan, 2000. Extracting Urban Feature from LiDAR Digital Surface Models. Computers, Environment and Urban Systems 24:65-78. Rabbani, T., and F. Van Den Heuvel, 2005. Efficient hough transform for automatic detection of cylinders in point clouds. In Proceedings of the ISPRS Workshop Laser scanning 2005. Enschede, the Netherlands. Rabbani, T., F. van Den Heuvel, and G. Vosselmann, 2006. Segmentation of point clouds using smoothness constraint. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (5):248-253. Renslow, M., 2001. Development of a bare ground DEM and canopy layer in NW forestlands using high performance LIDAR. In ESRI International User Conference. San Diego, California: ESRI. Roth, G., and M.D. Levine, 1993. Extracting geometric primitives. CVGIP: Image Understanding 58 (1):1-22. Rusu, R.B., 2010. Semantic 3d object maps for everyday manipulation in human living environments. KI-Künstliche Intelligenz 24 (4):345-348. Samadzadegan, F. , B. Bigdeli, and P. Ramzi, 2010. Classification of LiDAR data based on multi-class SVM. In The 2010 Canadian Geomatics Conference and Symposium of Commission I, ISPRS. Calgary, Alberta, Canada. Schaeffer, S. E., 2007. Graph clustering. Computer Science Review 1 (1):27-64. Schnabel, R., R. Wahl, and R. Klein, 2007. Efficient RANSAC for Point‐Cloud Shape Detection. Computer Graphics Forum 26 (2):214-226. Schuster, H.F., 2004. Segmentation of lidar data using the tensor voting framework. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 35:1073-1078. Shapovalov, R., A. Velizhev, and O. Barinova, 2010. Non-associative markov networks for 3d point cloud classification. Photogrammetric Computer Vision and Image Analysis 38 (Part 3A):103-108. Shi, J., and J. Malik, 2000. Normalized cuts and image segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on 22 (8):888-905. Stumpf, R., and L. Teague, 2005. Object-Oriented Systems Analysis and Design with UML. Upper Saddle River,New Jersey: Pearson Education, Inc. Suzuki, S., 1985. Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30 (1):32-46. Terrasolid, 2012. Document for Ground Extraction, URL:http://www.terrasolid.fi /system/files/ground_classification.ppt (last date accessed: 3 July 2012). Vosselman, G., and S. Dijkman, 2001. 3D building model reconstruction from point clouds and ground plans. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences 34 (3/W4):37-44. Wang, C.K., and P.H. Hsu, 2007. Building Detection and Structure Line Extraction from Airborne LiDAR Data. Journal of Photogrammetry and Remote Sensing 12 (4):365-379. Wang, Y., H. Weinacker, and B. Koch, 2008. A lidar point cloud based procedure for vertical canopy structure analysis and 3D single tree modelling in forest. Sensors 8 (1424-8220):1. Wu, Z., and R. Leahy, 1993. An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 15 (11):1101-1113. Zhan, Q, Y Liang, and Y Xiao, 2009. Color-Based Segmentation of Point Clouds. In Laserscanning09. Paris. 王偉立,2008。光達點雲平面特徵自動化匹配與航帶平差之研究。碩士論文,國立成功大學測量及空間資訊學系,台南。 王淼、湯凱佩、曾義星,2005。光達資料八分樹結構化於平面特徵萃取。航測及遙測學刊,10(1),59-70。 李唐宇,2007。結合多元資料重建三維房屋模型。碩士論文,國立中央大學土木工程學系,中壢。 林耿帆、邱彥瑋、張智昌、徐百輝,2011。以物件導向結合影像與光達點雲資料之地物分類,台灣地理資訊研討會。台北。 邵怡誠、陳良健,2006。空載光達點雲於 DEM 自動生產與精度評估--使用 isprs 測試資料為例。航測及遙測學刊,11(1),1-12。 洪凱政,2009。應用多光譜影像多種特徵偵測崩塌地之研究。碩士論文,國立成功大學測量及空間資訊學系,台南。 徐百輝,2010。物件導向分類演算法於衛星影像分析之應用(YX99-044):國立中央大學前瞻通訊實驗室九十九年度專案研究計畫。 張晏獅,2007。空載lidar結合航照影像應用於人工建築物自動判釋之研究。碩士論文,國立成功大學地球科學系,台南。 莊雲翰,2002。結合影像區塊及知識庫分類之研究-以 ikonos 衛星影像為例。碩士論文,國立中央大學土木工程學系,中壢。 黃仁伯,2009。物件導向系統分析與設計。台北:旗標出版股份有限公司。 鄭智仁,2010。應用空載光達與正射影像以物件導向影像分析法進行自動化崩塌地偵測。碩士論文,國立成功大學衛星資訊暨地球環境研究所,台南。 鄭雅文、史天元、蕭國鑫,2008。物件導向分類於高解析度影像自動判釋。航測及遙測學刊,13(4),273-284。 賴泓瑞,2009。以模型樣版為基礎之建物三維點雲建模演算法。碩士論文,國立成功大學測量及空間資訊學系,台南。 賴彥中,2004。結合光達資料與數位空照影像重建三維建物模型。碩士論文,國立中央大學土木工程學系,中壢。 羅英哲、曾義星,2009。光達點雲資料面特徵重建。航測及遙測學刊,14(3),171-184。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64054 | - |
| dc.description.abstract | 近年來隨高解析度衛星影像的發展,影像分類模式由逐像元分類方式逐漸發展為以影像區塊或物件為基礎的分類方法。在以物件為基礎的影像分析方法中,除了額外考量影像物件之光譜、形狀、紋理等特徵作為分類依據之外,亦同步建立像元間的從屬關係,因而提升影像分類的正確性及完整性。為了提高利用光達資料自動分類目標物的能力,本研究將二維物件式影像分類架構應用至三維光達點雲資料的分類。研究方法主要分為三個部分,首先將點雲資料分割為獨立的三維點雲物件。接續利用本研究設計之數種物件特徵,如 Model Ratio、Mean PC、Znormalized、Mean Intensity 等,對各物件進行特徵萃取,以描述點雲物件之空間分佈特性。最後建構分類規則,以決策樹進行點雲物件自動化分類。為驗證本研究於各式光達之適用性,實驗中分別以空載光達與地面光達資料進行自動化地物分類,同時以現有點雲處理軟體LASTOOL與人為方式分類實驗區地物,作為平行化比較及分類品質評估依據。在空載光達部份,研究中選用結構物、樹及車輛作為分類標的,於整體分類精度與Kappa值分別達到98.40 % 與0.9638 之分類成效;在地面光達部份,本研究選用建物、小型結構物、樹、樹幹與樹叢等類別作為分類目標,整體分類精度與Kappa值分別為84.28 % 與0.7221。由實驗成果可知,以物件為基礎之光達點雲分類,能藉由描述點群具有的空間特性輔助點雲判釋,不僅能提升分類成果與人為認知的一致性,在分類品質上亦能有良好的表現。 | zh_TW |
| dc.description.abstract | Recently, with the development of high-resolution images, the image analysis and classification methods have transferred from pixel-based to object-based. Under the consideration of the specific spatial features of objects, such as spectral, shape or texture, or the subordinative relations among objects, object-based image analysis (OBIA) could give assistance to the description of object attributes, which effectively improves the image classification efficiency. In order to raise the capability of automatic recognition of land features from LiDAR data, the 2D object-based classification method is extended for 3D point cloud classification of LiDAR data in this study. The methodology is mainly divided into three parts. First of all, point cloud is segmented to independent 3D objects by various methods. Secondly, in order to describe the spatial characters of these objects, 3D features designed by this study are calculated (e.g., Model Ratio, Znormalized, PFH Index, Difference Ratio). At last, a set of decision rules is built and the point clouds are classified automatically by using the decision tree. To verify the applicability of various LiDAR data, airborne LiDAR and ground-based LiDAR were applied to automatic land feature classification in this study. Meanwhile, LASTOOL, software for LiDAR processing, and manual way were applied to classify the land features in experimental area as bases of parallel comparison and quality assessment. On the part of airborne LiDAR, structures, trees and cars were chosen to be the targets of classification. The overall accuracy and kappa value ran up to 98.40 % and 0.9638 respectively. On the part of ground-based LiDAR, buildings, small structures, trees, trunks and groves were chosen to be the targets. The overall accuracy and kappa value were 84.28 % and 0.7221 respectively. The results show that utilizing the object-based concept to classify LiDAR point cloud can assist point cloud recognition by means of describing the spatial characters of those objects. It then, therefore, improves not only the cognitive consistency of human perception but also the classification quality. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:28:09Z (GMT). No. of bitstreams: 1 ntu-101-R99521117-1.pdf: 9397501 bytes, checksum: 06353aa534ade93f044ad31a5be537f9 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書#
中文摘要 i ABSTRACT ii 目錄 iii 圖目錄 vi 表目錄 ix 第一章、前言 1 1.1 研究背景 1 1.2 研究動機 2 1.3 文獻回顧 5 1.4 研究目的與方法 6 1.5 論文架構 7 第二章、相關研究 8 2.1 以物件為基礎的分類 8 2.1.1 物件的基本概念 8 2.1.2 以物件為基礎之影像分類 (OBIA) 10 2.1.3 自動化分類 15 2.2 光達點雲結構化 17 2.3 光達點雲分割 19 2.3.1 點雲分割模式 19 2.3.2 地面點萃取 20 2.3.3 非地面點分割 21 第三章、研究方法 24 3.1 光達資料簡介 24 3.2 點雲結構化 26 3.2.1 八分樹 26 3.2.2 k 維樹 26 3.3 點雲分割 27 3.3.1 地面點萃取 27 3.3.2 非地面點分割 30 3.3.2.1 三維叢聚分割法 30 3.3.2.2 RANSAC 分割法 32 3.4 物件特徵萃取 39 3.4.1 前置運算 39 3.4.1.1 鄰近點搜尋 39 3.4.1.2 法向量計算 40 3.4.1.3 二維邊界萃取 41 3.4.2 特徵設計 42 3.4.2.1 幾何特徵 43 3.4.2.2 統計特徵 45 3.5 光達點雲自動化分類 49 3.6 分類品質評估 52 第四章、實驗成果與分析 54 4.1 實際空載光達資料 55 4.1.1 實驗區域分析 55 4.1.2 點雲分割 56 4.1.2.1 地面/非地面點分割 56 4.1.2.2 非地面點分割 57 4.1.3 物件特徵分析 59 4.1.4 初步分類規則設計與分類成果 63 4.1.5 二次分類規則設計與分類成果 65 4.1.6 分類品質評估 68 4.1.7 與LASTOOL分類成果比較與分析 70 4.2 實際地面光達資料 73 4.2.1 實驗區域分析 73 4.2.2 點雲分割 74 4.2.2.1 地面/非地面點分割 74 4.2.2.2 非地面點分割 75 4.2.3 物件特徵分析 76 4.2.4 初步分類規則設計與分類成果 78 4.2.5 二次分類規則設計與分類成果 80 4.2.6 分類品質評估 82 4.2.7 與 LASTOOL 分類成果比較與分析 84 第五章、結論與未來工作 86 參考文獻 88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 物件式分類 | zh_TW |
| dc.subject | 分割 | zh_TW |
| dc.subject | 決策規則 | zh_TW |
| dc.subject | 特徵萃取 | zh_TW |
| dc.subject | Object-Based Classification | en |
| dc.subject | Segmentation | en |
| dc.subject | Feature Extraction | en |
| dc.subject | Decision Rules | en |
| dc.title | 以物件為基礎之光達點雲分類 | zh_TW |
| dc.title | Object-Based Classification for LiDAR Point Cloud | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曾義星,邱式鴻,王聖鐸 | |
| dc.subject.keyword | 物件式分類,分割,特徵萃取,決策規則, | zh_TW |
| dc.subject.keyword | Object-Based Classification,Segmentation,Feature Extraction,Decision Rules, | en |
| dc.relation.page | 93 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 9.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
