Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64051
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周仲島
dc.contributor.authorChi-June Ultimate Jungen
dc.contributor.author鍾吉俊zh_TW
dc.date.accessioned2021-06-16T17:28:02Z-
dc.date.available2014-08-17
dc.date.copyright2012-08-17
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citation毛又玉,2007:台灣北部地區層狀與對流降水的雨滴譜特性。國立中央大學大氣物理研究所碩士論文,101頁。
王時鼎、謝信良、鄭明典與葉天降,1998:侵台颱風流型與颱風路徑走向間之關係研究。天氣分析與預報研討會論文彙編(87),268-275。
周仲島,2010:颱風及梅雨豪雨定量降水技術發展—都卜勒雷達資料之應用。交通部中央氣象局委託研究計畫CWB99-2M-08,179頁。
林位總,2004:利用二維雨滴譜儀研究雨滴譜特性。國立中央大學大氣物理研究所碩士論文,89頁。
張偉裕,2002:利用雨滴譜儀分析雨滴譜(納莉颱風個案)。國立中央大學大氣物理研究所碩士論文,95頁。
許玉金,2005:台灣北部地區雨滴粒徑分布特性與降雨估計之探討。國立中央大學大氣物理研究所碩士論文,89頁。
許晃雄、洪志誠、翁春雄、李明營、羅資婷、郭芮伶、柯亘重與周佳,2010:莫拉克颱風的多重尺度背景環流。大氣科學,38,1-20。
陳奕如,2009:SoWMEX 實驗期間雨滴粒徑分佈特性之研究。國立中央大學大氣物理研究所碩士論文,99頁。
陳姿瑾,2009:西南氣流實驗之雨滴譜分析研究。國立臺灣大學大氣科學研究所碩士論文,87頁。
陳泰然,2007:最近之梅雨研究回顧。大氣科學,35,261-286。
______、李清勝、王時鼎、紀水上與周仲島,1993:豪雨預報技術改進之研究—颱風部分。交通部中央氣象局委託研究計畫CWB82-2M-10,276頁。
______、柳中明、周仲島與陳正平,1995:台灣地區人造雨評估與規畫。交通部中央氣象局委託研究計畫CWB-84-2M-10,159頁。
______與王重傑,2002:梅雨季台灣中北部地區伴隨鋒面與中尺度低壓豪(大)雨與定量降水之中尺度氣候研究。大氣科學,30,61-82。
______與林宗嵩,1997:梅雨季台灣中南部地區豪大雨之氣候特徵研究。大氣科學,25,289-306。
______與紀水上,1978:台灣梅雨鋒面之中幅度結構。大氣科學,5,35-47。
______與楊進賢,1988:台灣梅雨期豪雨之時空分布特徵。大氣科學,16,151-162。
童崇旗,2009:西南氣流實驗期間之降水特徵與相關環境型態。國立臺灣大學大氣科學研究所碩士論文,90頁。
鳳雷,2002;熱帶降水系統之雙偏振雷達觀測研究。國立臺灣大學大氣科學研究所博士論文,161頁。
簡巧菱,2006:台灣北部地區不同季節以及不同降水型態的雨滴粒徑分布特性。國立中央大學大氣物理研究所碩士論文,135頁。
Amitai, E., 2000: Systematic variation of observed radar reflectivity–rainfall rate relations in the tropics. J. Appl. Meteor., 39, 2198–2208.
Atlas, D., and C. W. Ulbrich, 1977: Path- and area-integrated rainfall measurement by microwave attenuation in the 1–3 cm band. J. Appl. Meteor., 16, 1322–1331.
Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev., 115, 1053–1070.
Brandes, E. A., G. Zhang, and J. Vivekanandan, 2003: An evaluation of a drop distribution–based polarimetric radar rainfall estimator. J. Appl. Meteor., 42, 652–660.
Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354–365.
Chang, P.-L., P.-F. Lin, B. J.-D. Jou, and J. Zhang, 2009: An application of reflectivity climatology in constructing radar hybrid scans over complex terrain. J. Atmos. Oceanic Technol., 26, 1315–1327.
Chang, W.-Y., T.-C. Chen Wang, and P.-L. Lin, 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-Band polarimetric radar. J. Atmos. Oceanic Technol., 26, 1973–1993.
Chen, G. T. J., and C. Y. Tsay, 1978: A synoptic case study of Mei-Yu near Taiwan. Papers Meteor. Res., 1, 25– 36.
Doviak, R. J. and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. Academic Press, 2nd edition, 562pp.
Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838–851.
Gamache, J. F., and R. A. Houze, 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118–135.
Germann, U., and J. Joss, 2002: Mesobeta profiles to extrapolate radar precipitation measurements above the Alps to the ground level. J. Appl. Meteor., 41, 542–557.
Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243–248.
Hess, M., P. Koepke and I. Schult, 1998: Optical properties of aerosols and clouds. Bull. Amer. Meteor. Soc., 79, 831-844.
Houghton, H. G., 1968: On precipitation mechanisms and their artificial modification. J. Appl. Meteor., 7, 851–859.
Houze, R. A., 1993: Cloud Dynamics. Academic Press, San Diego, 573 pp.
——, 1997: Stratiform precipitation in regions of convection: A meteorological paradox?. Bull. Amer. Meteor. Soc., 78, 2179–2196.
Joss, J., and A. Waldvogel, 1967: Ein Spektrograph für Niederschlagstropfen mit automatischer Auswertung. Pure Appl. Geophys., 68, 240-246.
——, and R. Lee, 1995: The application of radar-gauge comparisons to operational precipitation profile corrections. J. Appl. Meteor., 34, 2612–2630.
Kozu, T., and K. Nakamura, 1991: Rainfall parameter estimation from dual-radar measurements combining reflectivity profile and path-integrated attenuation. J. Atmos. Oceanic Technol., 8, 259–270.
Lee, C.-S., Y.-C. Liu, and F.-C. Chien, 2008: The secondary low and heavy rainfall associated with Typhoon Mindulle (2004). Mon. Wea. Rev., 136, 1260–1283.
Maddox, R. A., J. Zhang, J. J. Gourley, and K. W. Howard, 2002: Weather radar coverage over the contiguous United States. Wea. Forecasting, 17, 927–934.
Marshall, J. S., and W. Mc K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165–166.
O’Bannon, T., 1997: Using a ‘‘terrain-based’’ hybrid scan to improve WSR-88D precipitation estimates. Preprints, 28th Int. Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 506–507.
Rosenfeld, D. and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 2457-2476.
Sauvageot, H., and J.-P. Lacaux, 1995: The shape of averaged drop size distributions. J. Atmos. Sci., 52, 1070–1083.
Sheppard, B. E., and P. I. Joe, 1994: Comparison of raindrop size distribution measurements by a Joss-Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSS Doppler radar. J. Atmos. Oceanic Technol., 11, 874–887.
Steiner, M., R. A. Houze, and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 1978–2007.
Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 1118–1140.
Tokay, A., A. Kruger, and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40, 2083–2097.
Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355–371.
——, ——, C. R. Williams, W. L. Ecklund, and K. S. Gage, 1999: Tropical rainfall associated with convective and stratiform clouds: Intercomparison of disdrometer and profiler measurements. J. Appl. Meteor., 38, 302–320.
——, P. Hartmann, A. Battaglia, K. S. Gage, W. L. Clark, and C. R. Williams, 2009: A field study of reflectivity and Z–R relations using vertically pointing radars and disdrometers. J. Atmos. Oceanic Technol., 26, 1120–1134.
Ulbrich, C. W, 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 1764-1775.
——, L. G. Lee, 1999: Rainfall measurement error by WSR-88D radars due to variations in Z–R law parameters and the radar constant. J. Atmos. Oceanic Technol., 16, 1017–1024.
Vignal, B., and W. F. Krajewski, 2001: Large-sample evaluation of two methods to correct range-dependent error for WSR-88D rainfall estimates. J. Hydrometeor., 2, 490–504.
——, G. Galli, J. Joss, and U. Germann, 2000: Three methods to determine profiles of reflectivity from volumetric radar data to correct precipitation estimates. J. Appl.Meteor., 39, 1715–1726.
Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31, 1067–1078.
White, A. B., P. J. Neiman, F. M. Ralph, D. E. Kingsmill, and P. O. G. Persson, 2003: Coastal orographic rainfall processes observed by radar during the California Land-Falling Jets Experiment. J. Hydrometeor, 4, 264–282.
Williams, C. R., W. L. Ecklund, and K. S. Gage, 1995: Classification of precipitating clouds in the tropics using 915-MHz wind profilers. J. Atmos. Oceanic Technol., 12, 996–1012.
Xin, L., G. Recuter, and B. Larochelle, 1997: Reflectivity-rain rate relationship for convective rainshowers in Edmonton. Atmos. Ocean, 35, 513-521.
Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 1941–1963.
Zawadzki, I. I., 1975: On radar-raingauge comparison. J. Appl. Meteor., 14, 1430-1436.
Zhang, J., K. Howard, and J. J. Gourley, 2005: Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J. Atmos. Oceanic Technol., 22, 30–42.
——, and Y. Qi, 2010: A real-time algorithm for the correction of brightband effects in radar-derived QPE. J. Hydrometeor, 11, 1157–1171.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64051-
dc.description.abstract台灣位於副熱帶季風區,多變的天氣系統受地形影響,產生複雜的降水過程及雨量分布。地面雨量站在山區的數量有限且分布不均,雷達可提供高時空解析度的降雨系統資訊並進行定量降雨估計。然而,由於降雨系統多具有不均勻的雷達回波剖面,且雷達波束受地形遮蔽影響,常無法測得或是低估近地面的降雨回波。本研究在梅雨季和颱風季期間,於山區河谷及平地設置雨滴譜儀,結合雷達觀測,對於降水系統的雨滴粒徑分布特徵以及垂直結構進行分析研究。暖季的降雨形態可由降雨率時序標準差大小分類為對流性及層狀性降水,層狀降水發生比例較高,但總雨量的主要來源則是對流降水。山區對流降水的發生比例高於平地,對流降水對山區總雨量的貢獻也較平地大。分析雨滴粒徑分布參數可發現,對流降水的粒徑分布型態為Gamma分布且多為較大的雨滴,但層狀降水更趨近於負指數型態(或稱為Marshall- Palmer)分布並以較小的雨滴為主。實驗觀測所擬合的不同降雨類型的Z-R關係式彼此相近,但皆與現用於降雨估計之Z=32.5 R1.65差距甚大。應用平均降雨關係式為Z=216.4 R1.35,可有效修正平地降雨的高估。本文分析回波垂直剖面發現,平均回波隨高度降低而穩定增加,比較平均回波剖面的斜率絕對值,可以發現:山區大於平地、對流大於層狀;而降雨強度越強,斜率也越大。利用此特性將雷達回波外延修正至地面,應用於定量降水估計,可改善山區降雨低估情形達10%以上。分類不同降雨型態,應用不同斜率進行回波值外延,估計降雨更為準確。zh_TW
dc.description.abstractIn Taiwan, complicate rainfall process and distribution produced by the interaction of terrain and subtropical weather systems. Rain gauges are limited and non-uniform distributed in the mountains, and radar has the ability to provide higher time and space resolution of the precipitation system then quantitative precipitation estimation (QPE) is proceeded. However, non-uniform vertical profile of reflectivity (VPR) and beam blockage due to complex topography could result in the underestimation of reflectivity. To understand the precipitation characteristics near surface, ground-based disdrometers were deployed both in the mountains and in the coastal plain. The variation of drop size distributions (DSD) is used to classify convective versus stratiform precipitation. The statiform precipitation is the major contribution to the rainfall duration while the convective precipitation contributed to the most accumulation rainfall, and larger percentage of probability of convection was presented in mountain area than in plain. The convective DSD shows gamma distribution with more large drops and the stratiform DSD is much similar with the Marshall- Palmer distribution. Surface Z-R relationships which are derived via DSD show little difference between different topographies or different rainfall type, but all show large difference with currently used Z=32.5 R1.65. Mean surface Z-R relationship, Z=216.4 R1.35, helps to correct the underestimation of QPE in plain. The composited VPR for both convective and stratiform precipitation show increases below the melting level, both in mountain and in the plain regions. The extended VPRs and surface Z-R relationship were used to reexamine the QPE of several typhoons. The underestimation in the mountain area was improved about 10 %. We could have more accurate QPE if we consider different VPR for various precipitation types.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:28:02Z (GMT). No. of bitstreams: 1
ntu-101-R98229026-1.pdf: 12987048 bytes, checksum: 438d0fee3a2ab8db0a813e2a5e8ae43b (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
口試委員審定書 ................................ ................................ ................................ ............... i
致謝 ................................ ................................ ................................ ................................ .. ii
摘要 ................................ ................................ ................................ ................................ . iii
Abstract AbstractAbstract ................................ ................................ ................................ ............................ iv
目錄 ................................ ................................ ................................ ................................ .. v
表目錄 ................................ ................................ ................................ ............................ vii
圖目錄 ................................ ................................ ................................ ........................... viii viii
第一章 前言 ................................ ................................ ................................ .................... 1
1-1 台灣地區暖季劇烈降雨系統 ................................ ................................ ........... 1
1-2 降水型態及雨滴譜特徵 ................................ ................................ ................... 2
1-3 雷達定量降水估計 ................................ ................................ ........................... 3
1-4 研究動機與目的 ................................ ................................ ............................... 4
第二章 資料來源與分析方法 ................................ ................................ ........................ 6
2-1資料來源 ................................ ................................ ................................ ............ 6
2-1-1 雷達回波資料 ................................ ................................ ....................... 6
2-1-2 2 撞擊式雨滴譜儀 (JWD) (JWD)(JWD) ................................ ................................ ....... 7
2-2 撞擊式雨滴譜儀資料分析方法 ................................ ................................ ....... 7
2-2-1 雨滴譜儀降積分參數計算 雨滴譜儀降積分參數計算 ................................ ............................... 7
2-2-2 雨滴譜儀資料修正 雨滴譜儀資料修正 ................................ ................................ ............... 8
2-2-3雨滴譜儀觀測降量檢驗 雨滴譜儀觀測降量檢驗 ................................ ................................ .... 9
2-2-4 雨滴粒徑分布參數計算 雨滴粒徑分布參數計算 ................................ ................................ ..... 10
2-2-5 5 Z-R關係式 ................................ ................................ ........................ 12
2-2-6 層狀與對流降雨型態的分類 層狀與對流降雨型態的分類 ................................ ............................. 13
2-3 雷達回波垂直剖面 (VPR)(VPR) (VPR)合成 ................................ ................................ ...... 14
2-4 山區或平地資料分類 ................................ ................................ ................... 15
第三章 實驗期間山區與平地的降雨特徵 ................................ ................................ .. 16
3-1 綜觀天氣與降雨概況 ................................ ................................ ..................... 16
3-1-1 個案: 2010 年 5月 28 日至 30 日 ................................ .................... 16
3-1-2 個案: 2010 年 6月 10 日至 14 日 ................................ .................... 17
3-1-3 個案:凡那比 (Fanapi, 2010)(Fanapi, 2010)(Fanapi, 2010)(Fanapi, 2010) (Fanapi, 2010) 颱風 ................................ ...................... 17
3-2 降雨特性 ................................ ................................ ................................ ......... 18
3-3 雨滴粒徑分布 ................................ ................................ ................................ . 19
3-3-1 形狀參數μ與斜率Λ 形狀參數μ與斜率Λ ................................ ................................ . 19
3-3-2 中值體積直徑 D0 ................................ ................................ ................ 20
3-3-3 標準化截距參數 Nw與平均粒徑 Dm ................................ ................. 20
vi
3-3-4 雨滴粒徑分布特性討論 雨滴粒徑分布特性討論 ................................ ................................ ..... 21
3-4不同降雨型態中的回 波值分布 ................................ ................................ ...... 23
3-5回波降雨 (Z-R)關係式 關係式 ................................ ................................ ..................... 24
第四章 回波垂直結構特徵與定量降水估計 ................................ .............................. 25
4-1 回波垂直 結構特徵 ................................ ................................ ......................... 25
4-1-1 對流與層狀降雨的回波垂直結構 對流與層狀降雨的回波垂直結構 ................................ ..................... 25
4-1-2 不同降雨強度的回波垂直結構 不同降雨強度的回波垂直結構 ................................ ......................... 26
4-1-3 平均 回波垂直剖面 回波垂直剖面 ................................ ................................ ............. 27
4-2 定量降水估計的方法 ................................ ................................ ..................... 28
4-3 定量降水估計實驗個案 ................................ ................................ ................. 29
4-3-1 個案概況:莫拉克 個案概況:莫拉克 (Morakot, 2009) (Morakot, 2009)(Morakot, 2009) 颱風 ................................ ........... 30
4-3-2 個案概況:卡玫基 個案概況:卡玫基 (Kalmaegi, 2008) (Kalmaegi, 2008)(Kalmaegi, 2008) (Kalmaegi, 2008)(Kalmaegi, 2008)(Kalmaegi, 2008)(Kalmaegi, 2008) 颱風 ................................ ......... 30
4-3-3 個案概況:鳳 凰(Fung(Fung(Fung (Fung-Wong, 2008)Wong, 2008) Wong, 2008) Wong, 2008)颱風 ................................ .......... 31
4-4 定量降水估計實驗結果 ................................ ................................ ................. 32
4-4-1 梅雨鋒面 ................................ ................................ ............................. 32
4-4-2 凡那比 (Fanapi)(Fanapi)(Fanapi)(Fanapi) (Fanapi) 颱風 ................................ ................................ ............ 32
4-4-3 莫拉克 (Morakot) (Morakot)(Morakot) 颱風 ................................ ................................ ......... 33
4-4-4 卡玫基 (Kalmaegi) (Kalmaegi)(Kalmaegi) (Kalmaegi)(Kalmaegi)(Kalmaegi)(Kalmaegi) 颱風 ................................ ................................ ....... 33
4-4-5 鳳凰 (Fung(Fung(Fung (Fung-Wong)Wong) 颱風 ................................ ................................ ........ 34
4-5 小結與討論 ................................ ................................ ................................ ..... 35
第五章 結論與建議 ................................ ................................ ................................ ...... 36
5-1 結論 ................................ ................................ ................................ ................. 36
5-1-1 暖季降水及雨滴譜特性 暖季降水及雨滴譜特性 ................................ ................................ ..... 36
5-1-2 雷達回波與降雨關係 雷達回波與降雨關係 ................................ ................................ ......... 37
5-1-3 暖季降水系統回波垂直結構特徵 暖季降水系統回波垂直結構特徵 ................................ ..................... 37
5-1-4定量降 雨估計與 VPR 修正方法 ................................ ......................... 38
5-2 建議與未來工作 ................................ ................................ ............................. 38
5-2-1 雨滴譜儀觀測校驗 雨滴譜儀觀測校驗 ................................ ................................ ............. 38
5-2-2 降水結構的垂直演變 降水結構的垂直演變 ................................ ................................ ......... 39
5-2-3 未來工作 ................................ ................................ ............................. 39
參考文獻 ................................ ................................ ................................ ........................ 41
表 ................................ ................................ ................................ ................................ ..... 46
圖 ................................ ................................ ................................ ................................ ..... 55
附錄 ................................ ................................ ................................ ............................... 106
附錄 A:雷達觀測降水原理 ................................ ................................ ............... 106
附錄 B:由雷達回波分類降雨型態 :由雷達回波分類降雨型態 ................................ ................................ ... 109
dc.language.isozh-TW
dc.title暖季降水系統雨滴譜及結構特徵分析研究zh_TW
dc.titleCharacteristics of Raindrop Size Distribution and Structure of Warm Season Precipitationen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳正平,隋中興,吳健銘,羅敏輝
dc.subject.keyword定量降水估計,回波降雨關係式,撞擊式雨滴譜儀,層狀/對流降水,雨滴粒徑分布,Gamma分布,回波垂直剖面,zh_TW
dc.subject.keywordQuantitative precipitation estimation (QPE),Z-R relationship,Joss-Waldvogel disdrometer,stratiform/convective precipitation,drop size distribution (DSD),gamma distribution,vertical profile of reflectivity (VPR),en
dc.relation.page110
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
12.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved