請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64041完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘俊良(Chun-Liang Pan) | |
| dc.contributor.author | Jiun-Min Hsu | en |
| dc.contributor.author | 徐均旻 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:27:36Z | - |
| dc.date.available | 2022-12-31 | |
| dc.date.copyright | 2012-09-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-16 | |
| dc.identifier.citation | Reference
Alexander, J.E., Hunt, D.F., Lee, M.K., Shabanowitz, J., Michel, H., Berlin, S.C., MacDonald, T.L., Sundberg, R.J., Rebhun, L.I., and Frankfurter, A. (1991). Characterization of posttranslational modifications in neuron-specific class III beta-tubulin by mass spectrometry. Proc Natl Acad Sci U S A 88, 4685-4689. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H., and Miyawaki, A. (2002). An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci U S A 99, 12651-12656. Baran, R., Castelblanco, L., Tang, G., Shapiro, I., Goncharov, A., and Jin, Y. (2010). Motor neuron synapse and axon defects in a C. elegans alpha-tubulin mutant. PLoS One 5. Bobinnec, Y., Moudjou, M., Fouquet, J.P., Desbruyeres, E., Edde, B., and Bornens, M. (1998). Glutamylation of centriole and cytoplasmic tubulin in proliferating non-neuronal cells. Cell Motil Cytoskeleton 39, 223-232. Bounoutas, A., O'Hagan, R., and Chalfie, M. (2009a). The multipurpose 15-protofilament microtubules in C. elegans have specific roles in mechanosensation. Curr Biol : 19, 1362-1369. Bounoutas, A., Zheng, Q., Nonet, M.L., and Chalfie, M. (2009b). mec-15 encodes an F-box protein required for touch receptor neuron mechanosensation, synapse formation and development. Genetics 183, 607-617, 601SI-604SI. Burkhardt, J.K., Echeverri, C.J., Nilsson, T., and Vallee, R.B. (1997). Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol 139, 469-484. Calixto, A., Chelur, D., Topalidou, I., Chen, X., and Chalfie, M. (2010). Enhanced neuronal RNAi in C. elegans using SID-1. Nat Methods 7, 554-559. Chalfie, M. (1982). Structural and functional diversity in the neuronal microtubules of Caenorhabditis elegans. J Cell Biol 93, 15-23. Chalfie, M., and Sulston, J. (1981). Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev Biol 82, 358-428. Chalfie, M., Sulston, J.E., White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1985). The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci 5, 956-964. Clark, S.G., and Chiu, C. (2003). C. elegans ZAG-1, a Zn-finger-homeodomain protein, regulates axonal development and neuronal differentiation. Development 130, 3781-3794. Conde, C., and Caceres, A. (2009). Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10, 319-332. Davis, M., Hammarlund, M., Harrach, T., Hullett, P., Olsen, S., and Jorgensen, E. (2005). Rapid single nucleotide polymorphism mapping in C. elegans. BMC Genomics 6, 118. Ersfeld, K., Wehland, J., Plessmann, U., Dodemont, H., Gerke, V., and Weber, K. (1993). Characterization of the tubulin-tyrosine ligase. J Cell Biol 120, 725-732. Finney, M., and Ruvkun, G. (1990). The unc-86 gene product couples cell lineage and cell identity in C. elegans. Cell 63, 895-905. Fouquet, J.P., Edde, B., Kann, M.L., Wolff, A., Desbruyeres, E., and Denoulet, P. (1994). Differential distribution of glutamylated tubulin during spermatogenesis in mammalian testis. Cell Motil Cytoskeleton 27, 49-58. Fukushige, T., Siddiqui, Z., and Chou, M. (1999). MEC-12, an alpha-tubulin required for touch sensitivity in C. elegans. J Cell Sci 112, 395-403. Hall, D., Hedgecock, E.M. (1991). Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65, 837-847,. Hilliard, M.A., and Bargmann, C.I. (2006). Wnt signals and frizzled activity orient anterior-posterior axon outgrowth in C. elegans. Dev Cell 10, 379-390. Hirokawa, N., Nitta, R., and Okada, Y. (2009). The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A. Nat Rev Mol Cell Biol 10, 877-884. Hirokawa, N., Niwa, S., and Tanaka, Y. (2010). Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610-648. Iftode, F., Clerot, J.C., Levilliers, N., and Bre, M.H. (2000). Tubulin polyglycylation: a morphogenetic marker in ciliates. Biol Cell 92, 615-628. Ikegami, K., Heier, R., Taruishi, M., Takagi, H., Mukai, M., Shimma, S., Taira, S., Hatanaka, K., Morone, N., Yao, I., et al. (2007). Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc Natl Acad Sci U S A 104, 3213-3221. Janke, C., and Kneussel, M. (2010). Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends in neurosciences 33, 362-434. Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot, N., Moreno, S., Sohrmann, M., et al. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231-237. Keays, D.A., Tian, G., Poirier, K., Huang, G.J., Siebold, C., Cleak, J., Oliver, P.L., Fray, M., Harvey, R.J., Molnar, Z., et al. (2007). Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell 128, 45-57. Kikkawa, M., and Hirokawa, N. (2006). High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations. EMBO J 25, 4187-4281. Kimura, Y., Kurabe, N., Ikegami, K., Tsutsumi, K., Konishi, Y., Kaplan, O., Kunitomo, H., Iino, Y., Blacque, O., and Setou, M. (2010). Identification of tubulin deglutamylase among Caenorhabditis elegans and mammalian cytosolic carboxypeptidases (CCPs). J Biol Chem 285, 22936-22977. Konishi, Y., and Setou, M. (2009). Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat Neurosci 12, 559-626. Koushika, S., Schaefer, A., Vincent, R., Willis, J., Bowerman, B., and Nonet, M. (2004). Mutations in Caenorhabditis elegans cytoplasmic dynein components reveal specificity of neuronal retrograde cargo. J Neurosci. 24, 3907-3923. LaMonte, B.H., Wallace, K.E., Holloway, B.A., Shelly, S.S., Ascano, J., Tokito, M., Van Winkle, T., Howland, D.S., and Holzbaur, E.L. (2002). Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34, 715-727. Maniar, T.A., Kaplan, M., Wang, G.J., Shen, K., Wei, L., Shaw, J.E., Koushika, S.P., and Bargmann, C.I. (2012). UNC-33 (CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting. Nat Neurosci 15, 48-56. Mizuno, N., Toba, S., Edamatsu, M., Watai-Nishii, J., Hirokawa, N., Toyoshima, Y., and Kikkawa, M. (2004). Dynein and kinesin share an overlapping microtubule-binding site. EMBO J 23, 2459-2526. Nangaku, M., Sato-Yoshitake, R., Okada, Y., Noda, Y., Takemura, R., Yamazaki, H., and Hirokawa, N. (1994). KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79, 1209-1220. Palazzo, A., Ackerman, B., and Gundersen, G.G. (2003). Cell biology: Tubulin acetylation and cell motility. Nature 421, 230. Pan, C.L., Baum, P.D., Gu, M., Jorgensen, E.M., Clark, S.G., and Garriga, G. (2008). C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless. Dev Cell 14, 132-139. Patel N, Thierry-Mieg D, and JR., M. (1993). Cloning by insertional mutagenesis of a cDNA encoding Caenorhabditis elegans kinesin heavy chain. Proc Natl Acad Sci U S A 90, 9181-9185. Prasad, B.C., and Clark, S.G. (2006). Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans. Development 133, 1757-1766. Puls, I., Jonnakuty, C., LaMonte, B.H., Holzbaur, E.L., Tokito, M., Mann, E., Floeter, M.K., Bidus, K., Drayna, D., Oh, S.J., et al. (2003). Mutant dynactin in motor neuron disease. Nat Genet 33, 455-456. Reed, N.A., Cai, D., Blasius, T.L., Jih, G.T., Meyhofer, E., Gaertig, J., and Verhey, K.J. (2006). Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 16, 2166-2172. Savage, C., Hamelin, M., Culotti, J.G., Coulson, A., Albertson, D.G., and Chalfie, M. (1989). mec-7 is a beta-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. Genes Dev 3, 870-881. Savage, C., Xue, Y., Mitani, S., Hall, D., Zakhary, R., and Chalfie, M. (1994). Mutations in the Caenorhabditis elegans beta-tubulin gene mec-7: effects on microtubule assembly and stability and on tubulin autoregulation. J Cell Sci 107, 2165-2175. Scholey, J.M. (2012). Kinesin-2 motors transport IFT-particles, dyneins and tubulin subunits to the tips of Caenorhabditis elegans sensory cilia: Relevance to vision research? Vision Res (in press). Schroer, T.A., Steuer, E.R., and Sheetz, M.P. (1989). Cytoplasmic dynein is a minus end-directed motor for membranous organelles. Cell 56, 937-946. Schulze, E., Asai, D.J., Bulinski, J.C., and Kirschner, M. (1987). Posttranslational modification and microtubule stability. J Cell Biol 105, 2167-2177. Tischfield, M.A., Baris, H.N., Wu, C., Rudolph, G., Van Maldergem, L., He, W., Chan, W.M., Andrews, C., Demer, J.L., Robertson, R.L., et al. (2010). Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 140, 74-87. Topalidou, I., Keller, C., Kalebic, N., Nguyen, K.C., Somhegyi, H., Politi, K.A., Heppenstall, P., Hall, D.H., and Chalfie, M. (2012). Genetically Separable Functions of the MEC-17 Tubulin Acetyltransferase Affect Microtubule Organization. Curr Biol 22, 1057-1065. Wicks, S.R., Yeh, R.T., Gish, W.R., Waterston, R.H., and Plasterk, R.H. (2001). Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet 28, 160-164. Winston, W.M., Molodowitch, C., and Hunter, C.P. (2002). Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295, 2456-2459. Yonekawa, Y., Harada, A., Okada, Y., Funakoshi, T., Kanai, Y., Takei, Y., Terada, S., Noda, T., and Hirokawa, N. (1998). Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J Cell Biol 141, 431-441. Zhao, C., Takita, J., Tanaka, Y., Setou, M., and Nakagawa, T. (2001). Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105, 587-597. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64041 | - |
| dc.description.abstract | 微管是維持神經結構的重要的構造,在神經的軸突運輸當中,微管扮演軌道的角色,讓運動蛋白可以在微管上移動,進而運送特定的貨物,像是蛋白或突觸小泡。除了當作軌道之外,微管更可以藉由微管蛋白上的後轉譯修飾等方式來主動控制貨物的運送方向。我們的研究發現,微管蛋白上特定位置的胺基酸也可以藉由和運動蛋白之間不同的親合性,來控制突觸小泡的運送方向。在模式生物Caenorhabditis elegans線蟲當中,α-微管蛋白基因mec-12會特定地表現在線蟲觸覺神經中。當這個MEC-12蛋白功能喪失時,觸覺神經上的突觸小泡就無法被運送到突觸,而聚集在觸覺神經細胞體內。本篇研究發現一個新的mec-12突變,不只是讓突觸小泡聚集在細胞體內,更將其反向運送到觸覺神經PLM的後端,我們將這個突變稱之為gm379。gm379也使得觸覺神經的軸突上出現大的三角形突起。透過RNAi以及SNP mapping的實驗,我們發現gm379將MEC-12上一個高度保留的glycine突變成為glutamate,而這樣一個突變造成的軸突三角形突起和突觸小泡運送方向的改變是一種增益效果的突變。透過免疫染色的實驗我們發現,在gm379中微管的後轉譯修飾並沒有受到影響。有趣的是,當負責順向運送的運動蛋白kinesin產生突變,會造成更多的突觸小泡錯誤地被運送到PLM的後端。相反地,去除反向運送的運動蛋白dynein之功能,可以減少突觸小泡的錯誤運送。這兩種運動蛋白相互競爭在微管上的接合位,所以我們假設gm379改變了微管對於這兩種運動蛋白的親合性,進而造成突觸小泡的運送方向改變。 | zh_TW |
| dc.description.abstract | Microtubules play essential functions in axon transport by serving as tracks for motor proteins and their cargos. They also play a more active role by directing cargo transport through tubulin posttranslational modification. Here we propose yet another level of regulation: specific residues on tubulins directly regulate synaptic vesicle transport by binding motor proteins with differential affinities. The C. elegans gene mec-12 encodes an α-tubulin that is uniquely enriched in the six touch receptor neurons. Complete loss of mec-12 causes loss of synaptic vesicles at synaptic regions and their accumulation in neuronal cell bodies. We identified a missense mutation of mec-12, gm379, which not only prevents synaptic vesicles from reaching synaptic regions, but also redirects them to non-axon compartment of the PLM touch neuron (synaptic vesicle mistargeting). This mutation also triggered extensive axon blebbing in the touch neurons. gm379 alters a conserved C-terminus glycine residue and behaves as a neomorphic gain-of-function mutation, as axon blebbing and synaptic vesicle mistargeting were not seen in the mec-12 null and could be completely abolished by mec-12 RNAi. Immunostaining for various microtubule posttranslational modifications revealed no obvious changes in the gm379 mutant, and synaptic vesicle mistargeting was not seen after RNAi knockdown of genes encoding enzymes for microtubule posttranslational modifications. Interestingly, reducing UNC-104/Kinesin 3/KIF1A functions aggravated vesicle mistargeting, and excess UNC-104 partially rescued it. By contrast, elimination of dynein heavy chain DHC-1 partially suppressed synaptic vesicle defects in gm379, mimicking the effects of UNC-104 overexpression. The glycine residue mutated in gm379 resides in an exposed helix-loop region on the tubulin polymers, which had been shown to be a common binding site for KIF1A and dynein heavy chain. We hypothesize that gm379 switches motor binding affinity of microtubules towards dynein, resulting in transport defects and mistargeting of synaptic vesicles. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:27:36Z (GMT). No. of bitstreams: 1 ntu-101-R99448010-1.pdf: 4022084 bytes, checksum: 6dc35453ad5f1c450477b62a1539e155 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 論文審定書 2
TABLE OF CONTENTS 3 ACKNOWLEDGEMENT 4 中文摘要 6 ABSTRACT 7 I. INTRODUCTION 9 1.1 AXON TRANSPORT 9 1.2 THE ROLE OF MICROTUBULES IN AXON TRANSPORT 10 Microtubules posttranslational modification 10 Interaction between microtubules and stracmolecular motors 13 1.3 AXON TRANSPORT AND NEURODEGENERATIVE DISEASES 14 II. MATERIALS AND METHODS 17 III. RESULTS 23 3.1 ISOLATION AND PHENOTYPIC CHARACTERIZATION OF GM379 23 Axon blebbing and neurodegeneration in gm379. 23 Vesicle transport defects in gm379. 25 3.2 MOLECULAR CLONING OF GM379 26 3.3 MEC-12(GM379) CAUSES BOTH GAIN-OF-FUNCTION AND LOSS-OF-FUNCTION PHENOTYPES 27 3.4 MEC-12(G416E) IS INCORPORATED INTO MICROTUBULES 31 3.5 MEC-12(G416E) ACTIVELY REDIRECTS SVS TO NON-AXON COMPARTMENTS 32 3.6 POSTTRANSLATIONAL MODIFICATIONS OF MICROTUBULES 33 3.7 MEC-12(G416E) DISRUPTS UNC-104-DEPENDENT SV ANTEROGRADE TRANSPORT 34 3.8 SV MISTARGETING OCCURS DUE TO INCREASED DYNEIN ACTIVITY 35 3.9 LOCALIZATION OF UNC-104 AND DHC-1 IN MEC-12(GM379) 37 IV. DISCUSSION 39 V. FIGURES 46 VI. REFERENCE 102 | |
| dc.language.iso | en | |
| dc.subject | 突觸小泡 | zh_TW |
| dc.subject | 軸突運輸 | zh_TW |
| dc.subject | 運動蛋白 | zh_TW |
| dc.subject | 線蟲 | zh_TW |
| dc.subject | 微管蛋白 | zh_TW |
| dc.subject | kinesin | en |
| dc.subject | microtubule | en |
| dc.subject | C. elegans | en |
| dc.subject | Axon transport | en |
| dc.subject | dynein | en |
| dc.title | 用遺傳分析探討線蟲微管蛋白對於軸突運輸的影響 | zh_TW |
| dc.title | Regulation of Axon Transport by Tubulins in Caenorhabditis elegans | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳益群(Yi-Chun Wu),吳君泰,李秀香 | |
| dc.subject.keyword | 軸突運輸,線蟲,微管蛋白,突觸小泡,運動蛋白, | zh_TW |
| dc.subject.keyword | Axon transport,kinesin,dynein,C. elegans,microtubule, | en |
| dc.relation.page | 107 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
