Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64025
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳林祈(Lin-Chi Chen)
dc.contributor.authorJui-Hong Wengen
dc.contributor.author翁瑞鴻zh_TW
dc.date.accessioned2021-06-16T17:26:59Z-
dc.date.available2017-08-27
dc.date.copyright2012-08-27
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citation行政院衛生署疾病管理局。2011。健康食品安全評估方法。台北:行政院衛生署疾病管理局。網址:http://www.cdc.gov.tw/。上網日期:2012-05-18。
行政院衛生署食品藥物管理局。2010。健康食品安全評估方法。台北:行政院衛生署食品藥物管理局。網址:http://www.fda.gov.tw。上網日期:2012-05-18。
張光華。2009。開發掌上型螢光檢測器用以評估水中之甘味與澀味。碩士論文。台北:台灣大學生物產業機電工程學系研究所。
Abbyad, P., Childs, W., Shi, X., Boxer, S.G. 2007. Dynamic Stokes shift in green fluorescent protein variants. Proceedings of the National Academy of Sciences. 104: 20189.
Beer, N.R., Hindson, B.J., Wheeler, E.K., Sara, B., Rose, K.A., Kennedy, I.M., Colston, B.W. 2007. On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets. Analytical chemistry. 79: 8471-8475.
Belgrader, P., Elkin, C.J., Brown, S.B., Nasarabadi, S.N., Langlois, R.G., Milanovich, F.P., Colston Jr, B.W., Marshall, G.D. 2003. A reusable flow-through polymerase chain reaction instrument for the continuous monitoring of infectious biological agents. Analytical chemistry. 75: 3446-3450.
Bernstein, E., Colson, S., Tinti, D., Robinson, G. 1968. Static Crystal Effects on the Vibronic Structure of the Phosphorescence, Fluorescence, and Absorption Spectra of Benzene Isotopic Mixed Crystals. The Journal of Chemical Physics. 48: 4632.
Buah-Bassuah, P.K., von Bergmann, H.M., Tatchie, E.T., Steenkamp, C.M. 2008. A portable fibre-probe ultraviolet light emitting diode (LED)-induced fluorescence detection system. Meas Sci Technol. 19.
Cady, N.C., Stelick, S., Kunnavakkam, M.V., Batt, C.A. 2005. Real-time PCR detection of Listeria monocytogenes using an integrated microfluidics platform. Sensors and Actuators B: Chemical. 107: 332-341.
Chang, W.H., Yang, S.Y., Wang, C.H., Tsai, M.A., Wang, P.C., Chen, T.Y., Chen, S.C., Lee, G.B. 2011. Rapid Isolation and Detection of Aquaculture Pathogens in an Integrated Microfluidic System Using Loop-mediated Isothermal Amplification. Sensors and Actuators B: Chemical.
Chi, C.W., Lao, Y.H., Li, Y.S., Chen, L.C. 2011. A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection. Biosensors and Bioelectronics. 26: 3346–3352.
Clegg, R.M. 1995. Fluorescence resonance energy transfer. Current opinion in biotechnology. 6: 103-110.
Csordas, A.T., Delwiche, M.J., Barak, J.D. 2008. Nucleic acid sensor and fluid handling for detection of bacterial pathogens. Sensors and Actuators B: Chemical. 134: 1-8.
Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O. 1995. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences. 92: 9363.
Főrster, T. 1959. 10th Spiers Memorial Lecture - Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27: 7-17.
Fürstenberg, A., Deligeorgiev, T.G., Gadjev, N.I., Vasilev, A.A., Vauthey, E. 2007. Structure–Fluorescence Contrast Relationship in Cyanine DNA Intercalators: Toward Rational Dye Design. Chemistry-A European Journal. 13: 8600-8609.
Fleck, A., Munro, H. 1962. The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation. Biochimica et Biophysica Acta (BBA)-Specialized Section on Nucleic Acids and Related Subjects. 55: 571-583.
Gulakov, I., Zenevich, A. 2001. Single-photon detection with the use of a gated silicon avalanche photodiode. Instruments and Experimental Techniques. 44: 548-550.
Hill, A. 1910. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol. 40.
Jang, J.M., Shin, H.J., Hwang, S.W., Yang, E.G., Yoon, D.S., Kim, T.S., Kang, J.Y. 2005. Miniaturized fluorescence detection system to remove background noise of the incident light using micro mirror and lens. Sensors and Actuators B: Chemical. 108: 993-1000.
Johansson, B. 1972. Agarose gel electrophoresis. Scandinavian Journal of Clinical & Laboratory Investigation. 29: 7-19.
Lakowicz, J.R., Masters, B.R. 2008. Principles of fluorescence spectroscopy. Journal of Biomedical Optics. 13: 029901.
Lee, D.S. 2010. Real-time PCR Machine System Modeling and a Systematic Approach for the Robust Design of a Real-time PCR-on-a-Chip System. Sensors. 10: 697-718.
Lee, D.S., Chang, B.H., Chen, P.H. 2005. Development of a CCD-based fluorimeter for real-time PCR machine. Sensors and Actuators B: Chemical. 107: 872-881.
Lee, D.S., Chen, M.H. 2009. Chip-Oriented Fluorimeter Design and Detection System Development for DNA Quantification in Nano-Liter Volumes. Sensors. 10: 146-166.
Lee, D.S., Wu, M.H., Ramesh, U., Lin, C.W., Lee, T.M., Chen, P.H. 2004. A novel real-time PCR machine with a miniature spectrometer for fluorescence sensing in a micro liter volume glass capillary. Sensors and Actuators B: Chemical. 100: 401-410.
Lehrer, S. 1971. Solute perturbation of protein fluorescence. Quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry. 10: 3254-3263.
Lin, S.W., Hsu, J.H., Chang, C.H., Lin, C.H. 2009. Objective-type dark-field system applied to multi-wavelength capillary electrophoresis for fluorescent detection and analysis. Biosensors and Bioelectronics. 25: 450-455.
Malorny, B., Hoorfar, J., Bunge, C., Helmuth, R. 2003. Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard. Applied and Environmental Microbiology. 69: 290-296.
Manninen, P., 2008. Characterization of diffusers and light-emitting diodes using radiometric measurements and mathematical modeling. Helsinki University of Technology.
Mansfield, S., Studenmund, W., Kino, G.S., Osato, K. 1993. High-numerical-aperture lens system for optical storage. Optics letters. 18: 305-307.
Marquette, C.A., Blum, L.J. 2008. Electro-chemiluminescent biosensing. Analytical and bioanalytical chemistry. 390: 155-168.
Matsuzaki, M., Kikura, H., Matsushita, J., Aritomi, M., Akatsuka, H. 2004. Real-time observation of Brownian motion and cluster movement of ferro-and non-magnetic particles in magnetic fluids. Science and Technology of Advanced Materials. 5: 667-671.
Mehta, D., Lee, C., Chiou, A. 2001. Multipoint parallel excitation and CCD-based imaging system for high-throughput fluorescence detection of biochip micro-arrays. Optics communications. 190: 59-68.
Mondal, S., Venkataraman, V. 2005. In situ monitoring of polymerase extension rate and adaptive feedback control of PCR by using fluorescence measurements. Journal of biochemical and biophysical methods. 65: 97-105.
Mondal, S., Venkataraman, V. 2007. Miniaturized devices for DNA amplification and fluorescence based detection. Journal of the Indian Institute of Science. 87: 309-332.
Nagl, S., Schaeferling, M., Wolfbeis, O.S. 2005. Fluorescence analysis in microarray technology. Microchimica Acta. 151: 1-21.
Nath, K., Sarosy, J.W., Hahn, J., Di Como, C.J. 2000. Effects of ethidium bromide and SYBR Green I on different polymerase chain reaction systems. Journal of biochemical and biophysical methods. 42: 15-29.
Novak, L., Neuzil, P., Pipper, J., Zhang, Y., Lee, S. 2007. An integrated fluorescence detection system for lab-on-a-chip applications. Lab on a Chip. 7: 27-29.
OLYMPUS. 2010. Specialized Microscopy Techniques. America:Olympus America Inc. Available at:http://www.olympusmicro.com/primer/techniques/darkfield.html: Accessed 14 September 2011.
Pais, A., Banerjee, A., Klotzkin, D., Papautsky, I. 2008. High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection. Lab Chip. 8: 794-800.
Pope, A.J., Haupts, U.M., Moore, K.J. 1999. Homogeneous fluorescence readouts for miniaturized high-throughput screening: theory and practice. Drug Discovery Today. 4: 350-362.
Qiu, X., Mauk, M.G., Chen, D., Liu, C., Bau, H.H. 2010. A large volume, portable, real-time PCR reactor. Lab Chip. 10: 3170-3177.
Ramalingam, N., Rui, Z., Liu, H.B., Dai, C.C., Kaushik, R., Ratnaharika, B., Gong, H.Q. 2010. Real-time PCR-based microfluidic array chip for simultaneous detection of multiple waterborne pathogens. Sensors and Actuators B: Chemical. 145: 543-552.
Ren, K., Liang, Q., Mu, X., Luo, G., Wang, Y. 2009. Miniaturized high throughput detection system for capillary array electrophoresis on chip with integrated light emitting diode array as addressed ring-shaped light source. Lab Chip. 9: 733-736.
Rost, F.W.D., 1995. Fluorescence microscopy. Cambridge Univ Pr.
Rutledge, R. 2004. Sigmoidal curve-fitting redefines quantitative real-time PCR with the prospective of developing automated high-throughput applications. Nucleic Acids Research. 32: 178-186.
Rutledge, R., Cote, C. 2003. Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Research. 31: 93-99.
Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 239: 487-491.
Schefe, J.H., Lehmann, K.E., Buschmann, I.R., Unger, T., Funke-Kaiser, H. 2006. Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s C T difference” formula. Journal of molecular medicine. 84: 901-910.
Semiconductor, N. 2011. LM317 datasheet On line. Available at:http://www.national.com/mpf/LM/LM317.html#Overview: Accessed 18 July 2011
Shen, L., Ratterman, M., Klotzkin, D., Papautsky, I. 2011. A CMOS optical detection system for point-of-use luminescent oxygen sensing. Sensors and Actuators B: Chemical. 155: 430-435.
Thrush, E., Levi, O., Cook, L.J., Deich, J., Kurtz, A., Smith, S.J., Moerner, W., Harris, J.S. 2005. Monolithically integrated semiconductor fluorescence sensor for microfluidic applications. Sensors and Actuators B: Chemical. 105: 393-399.
Tichopad, A., Dilger, M., Schwarz, G., Pfaffl, M.W. 2003. Standardized determination of real‐time PCR efficiency from a single reaction set‐up. Nucleic Acids Research. 31: 122-128.
Török, P., Laczik, Z., Sheppard, C. 1996. Effect of half-stop lateral misalignment on imaging of dark-field and stereoscopic confocal microscopes. Applied optics. 35: 6732-6735.
Uribe, P., Martin, F.N. 2008. Using sigmoidal curve-fitting in a real-time PCR detection assay to determine detection thresholds. Proceedings of the Sudden Oak Death Third Science Symposium. GENERAL TECHNICAL REPORT PSW-GTR-214.
Wang, J.H., Chien, L.J., Hsieh, T.M., Luo, C.H., Chou, W.P., Chen, P.H., Chen, P.J., Lee, D.S., Lee, G.B. 2009. A miniaturized quantitative polymerase chain reaction system for DNA amplification and detection. Sensors and Actuators B: Chemical. 141: 329-337.
Weckler, G.P. 1967. Operation of pn junction photodetectors in a photon flux integrating mode. Solid-State Circuits, IEEE Journal of. 2: 65-73.
wiseGEEK. 2011. What is SYBR Green®? Conjecture Corporation Available at: http://www.wisegeek.com/what-is-sybr-green.htm: : Accessed 5 Octorber 2011.
Witlin, B. 1945. Darkfield Illuminators in Microscopy. Science. 102: 41-42.
Wittwer, C.T., Herrmann, M.G., Moss, A.A., Rasmussen, R.P. 1997. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques. 22: 130-139.
Zemanová, L., Schenk, A., Valler, M.J., Nienhaus, G.U., Heilker, R. 2003. Confocal optics microscopy for biochemical and cellular high-throughput screening. Drug Discovery Today. 8: 1085-1093.
Zhang, C.S., Li, Y.Y., Wang, H.Y. 2011. Rapid Amplification and Detection of Foodborne Pathogenic Rotavirus by Continuous-flow Reverse Transcription-Polymerase Chain Reaction Integrated with Online Fluorescence Analysis. Chinese Journal of Analytical Chemistry. 39: 645-651.
Zhang, J., Chung, T.D.Y., Oldenburg, K.R. 1999. Validation of High Throughput Screening Assays. Journal of Biomolecular Screening. 4: 67-73.
Zipper, H., Brunner, H., Bernhagen, J., Vitzthum, F. 2004. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Research. 32: 103-113.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64025-
dc.description.abstract定量聚合酶鏈鎖反應(quantitative polymerase chain reaction, qPCR)是一種結合DNA複製與螢光感測技術以進行快速致病原檢測的分析方法。隨著防疫觀念的興起,防疫人員期望能發展在採樣現場即時作業的可攜式定量PCR檢測器。然而檢測器的微小化往往會造成螢光訊號微弱的問題。為了增進微小檢測器的效能,我們期望能運用暗場(dark-field)光學機構的概念,以光遮片(light stop)與聚光器(condenser)設計來抑制背景光源的干擾並提高訊號對比度。本研究研發以高發光效率的LED作為光源之可攜式定量PCR核酸檢測器,並提出一種新型的暗場光學設計藉以增進核酸偵測極限。檢測器之光學機構使用壓克力為基材,以CNC铣床進行加工,再將LED、光電二極體、濾光鏡、透鏡等元件安置其中。同時設計亮場(傳統直線式)與暗場(新型同側式)的光學機構進行性能比較,亮場與暗場的激發光強度分別為37.4 klx與15.2 klx,進行檢測時各有50.2與28.6的訊噪比。暗場型的光遮片設計為160度的5 mm縫隙時,具有最佳的感測效能。檢測器進行核酸定量時,可具有0.5 ng/ml(亮場)與0.16 ng/ml(暗場)的偵測極限。在定量PCR系統的驗證中,我們採用沙門氏菌(Salmonella spp.)的特徵序列InvA gene作為標的,以市售PCR機器進行核酸擴增,再加入SYBR Green I螢光分子後染(post-stain),並使用螢光檢測器分析。PCR反應的擴增曲線以sigmoid model進行曲線配適,可得其擴增效率為0.56(亮場)與1.02(暗場)。而在30 cycles定量PCR分析中,檢測器的檢測極限分別為103 copies(亮場)與102 copies(暗場)。本研究發展的暗場型螢光檢測器可成功的應用於定量PCR檢測,並獲得較亮場型光學機構更佳的偵測極限。未來若能整合微型化的溫度控制模組,成為可攜式的即時定量PCR儀器(real-time qPCR),將能有效提升檢疫人員於現場分析的機動性,對防疫工作有很大的助益。zh_TW
dc.description.abstractQuantitative polymerase chain reaction (qPCR) is a rapid pathogen detection method. It combines DNA amplification and fluorescence detection technology. Emerging concept of point-of-care demands that the quarantine officers expect to develop portable qPCR systems, which can be used for on-site detection. However, the miniaturization of system may hamper the fluorescence signal. In order to enhance the system’s detection limit, we adapted and elaborated the dark-field optics that was developed for the microscope application. This design combines light stop and condenser in order to improve the contrast of fluorescent image by inhibiting the background light interference. In this study, we have developed and tested a portable qPCR device using the high luminous efficiency LED and a novel dark-field optical design against the detection limit. The device is constructed out by the CNC machining, and it is modularized compactly in order to accommodate self-sufficiently the LED, the photodiode, the filters and the lens. Our design features, two kinds of optical structure – bright field and dark-field are designed in order to facilitate system performance comparison as well as application flexibility. The results show that the excitation intensity were 37.4 klx(bright-field) and 15.2 klx(dark-field) and the signal to noise ratio were 50.2(bright-field) and 28.6(dark-field), respectively. Optimum sensing performance was identified with a 160 degree at 5 mm slit. When the light stop in dark-field optics has 160 degress and 5 mm width slit, the system has better sensing performance. For the quantification of SYBR Green binding to the DNA, the detection limit were 0.5 ng/ml(bright-field) and 0.16 ng/ml(dark-field). Finally, the system verification was done by detecting the InvA gene sequence which is the biomarker of Salmonella spp. and amplified them by commercial PCR machine. The PCR products were post-stained with SYBR Green I and detected by optical detector. The record signal were analyzed by sigmoid model fitting to calculate the amplified efficiency, and the efficiency were found to be 0.78(bright-field) and 1.02(dark-field). In the quantitative PCR analysis, the bright-field and dark-field device can detect 103 and 102 copies of templates, respectively, in 30 cycles of operation. In summary, the dark-field fluorometer developed in this research can be successfully applied to quantitative PCR and gets better sensing performance than bright-field optical apparatus. If a thermal control module can be integrated with this optical system to develop a real-time qPCR device, we conclude that our development will facilitate the mobility of quarantine officers in the detection site a lot. It will also advance the point-of-care medicine service in near future.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:26:59Z (GMT). No. of bitstreams: 1
ntu-101-R99631017-1.pdf: 3204218 bytes, checksum: 73288ac09356203cddef3cfe2366bf3c (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 x
符號說明 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究架構 4
第二章 文獻探討 5
2.1 核酸螢光定量原理 5
2.1.1 螢光分子之效應 5
2.1.2 核酸定量之應用 8
2.2 螢光光學偵測系統設計 12
2.2.1 光學機構介紹 12
2.2.2 感測器電路設計 15
2.3 即時定量PCR系統 17
2.3.1 聚合酶鏈鎖反應(PCR)機制與理論分析 17
2.3.2 即時定量PCR系統偵測機制 19
2.3.3 光學檢測器設計與微型化策略 22
2.4 暗場型(dark-field)螢光光學偵測 23
2.4.1 暗場型光學原理 23
2.4.2 光遮片(light stop)設計之考量 25
第三章 研究方法 27
3.1 實驗儀器與設備 27
3.2 實驗藥品 28
3.3 光學元件測試 29
3.3.1 LED於光學檢測器應用分析 30
3.3.2 光電二極體訊號穩定性測試 31
3.3.3 帶通濾光鏡(band pass filter)效能測試 32
3.4光學機構設計與加工 33
3.4.1 亮場型光學機構設計 33
3.4.2 暗場型光學機構設計 33
3.4.3 光學機構與激發光強度比較 34
3.5 系統性能測試 35
3.5.1 檢測效能指標與偵測極限測試 35
3.5.2 光遮片設計與檢測器效能測試 36
3.6 定量PCR分析系統應用 37
3.6.1 模擬病原製作 37
3.6.2 核酸擴增與螢光樣本製備 38
3.6.3 PCR擴增曲線分析 40
3.6.4 定量PCR系統比對 41
第四章 結果與討論 43
4.1 光學元件效能評估 43
4.1.1 光電二極體訊號飄移現象 43
4.1.2 帶通濾光鏡(bandpass filter)穿透度分析 45
4.2 光學感測系統建構 47
4.2.1 亮場型螢光檢測器 47
4.2.2 暗場型螢光檢測器 48
4.2.3 光遮片設計對激發光強度的影響 49
4.3 螢光感測器之性能評估 51
4.3.1 檢測效能指標與偵測極限 51
4.3.2 光遮片設計對檢測效能指標的影響 55
4.4定量PCR分析系統應用 57
4.4.1 模擬病原的定量與定性 57
4.4.2 核酸擴增產物分析 60
4.4.3 PCR擴增曲線分析與效率探討 62
4.4.4 定量PCR核酸分析 65
4.4.5 與real-time PCR儀器進行系統比對 67
第五章 結論與建議 71
5.1 結論 71
5.1.1 系統規格 71
5.1.2 結論. 72
5.2 未來展望與建議 74
參考文獻 76
dc.language.isozh-TW
dc.subject沙門氏菌zh_TW
dc.subject暗場光學zh_TW
dc.subject發光二極體zh_TW
dc.subject螢光感測zh_TW
dc.subject反應zh_TW
dc.subject定量聚合&#37238zh_TW
dc.subjectLEDen
dc.subjectfluorescence detectionen
dc.subjectSalmonella spp.en
dc.subjectqPCRen
dc.subjectdark-field opticsen
dc.title亮場型與暗場型LED螢光定量PCR感測模組開發及微小化zh_TW
dc.titleOn the Development and Miniaturization of Bright-Field and Dark-Field LED Fluorescent Quantitative PCR Sensor Modulesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee歐陽又新(Yew-Shing Ouyang),鄭宗記(Tzong-Jih Cheng),洪敏勝(Min-Sheng Hung)
dc.subject.keyword定量聚合&#37238,反應,螢光感測,發光二極體,暗場光學,沙門氏菌,zh_TW
dc.subject.keywordqPCR,fluorescence detection,LED,dark-field optics,Salmonella spp.,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved