請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63991完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林裕彬 | |
| dc.contributor.author | Chen-Huan Wu | en |
| dc.contributor.author | 吳承寰 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:25:33Z | - |
| dc.date.available | 2015-08-20 | |
| dc.date.copyright | 2012-08-20 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | 1. Aadland L.P., 1993. Steram habitat types: their fish assemblages and relationship to flow. North American Journal of Fisheries Management, 13(4): 790-806.
2. Abe, S., Yodo, T., Matsubara, N., Iguchi, K., 2007. Distribution of two sympatric amphidromous grazing fish Plecoglossus alivelis Temminck & Schlegel and Sicypoterus japonicus (Tanka) along the course of a temperate river. Hydrobiologia 575: 415-422. 3. Ahmadi-Nedushan, B., St-Hilaire, A., Berube, M., Robichaud, E., Thiemonge, N., Bobee, B., 2006. A review of statistical methods for the evaluation of aquatichabitat suitability for instream flow assessment. River Research and Applications 22: 503-523. 4. Akihito, S.K., Ikeda, Y., Iwata, A., 2000. Gobioidei. In: Nakabo, T. (Ed), Fishes of Japan with pictorial keys to the species. Tokai University Press, Tokyo. 5. Allan, J.D., 1983. Predator-prey relationships in streams. In: Barnes, J.R., Minshall, G.W. (Eds), Stream ecology: application and testing of general ecological theory. Plenum Press, 191-229. 6. Allan, J.D., 1995. Stream ecology: structure and function of running waters. Chapman and Hall, London. 7. Angermeier, P.L., Karr, J.R., 1983. Fish communities along environmental gradients in a system of tropical streams. Environmental Biology of Fishes 9: 117-135. 8. Angermeier P.L., Schlosser I.J., 1989. Species-area relationships for stream fishes. Ecology 70: 1450-1642. 9. Annoni P., Saccardo I., Gentili G., Guzzi L., 1997. A multivariate model to relate hydrological, chemical and biological parameters to salmonoid biomass in Italian Alpine rivers. Fisheries Management and Ecology 4(6): 439-452. 10. Azzellin, A., Vismara, R., 2001. Pool quality index: new method to define minimum flow requirements of high-gradient, low-order streams. Journal of Environmental Engineering 127: 1003-1013. 11. Beecher, H.A., Caldwell, B.A., Demond, S.B., 2002. Evaluation of depth and velocity preferences of juvenile coho salmon in Washington streams. North American Journal of Fisheries Management 22: 785-795. 12. Bergen, S.D., Bolton, S.M., Fridley, J.L., 1997. Ecological engineering: design based on ecological principles. ASAE Annual International Meeting. Paper No. 975035. ASAE, 2950 Niles Rd., St. Joseph, MI 49085-9659, USA. 13. Bovee, K.D., 1986. Development and evaluation of habitat suitability criteria for use in the instream flow incremental methodology. U.S. Fish and Wildlife Service Biological Report 86(7): 1-235. 14. Braaten P.J., Guy C.S., 1999. Relations between physicochemical factors and abundance of fishes in tributary confluences of the lower channelized Missouri river. Transactions of the American Fisheries Society 128(6): 1213-1221. 15. Braga-Neto U.M., Dougherty, E.R., 2004. Is cross-validation valid for small-sample microarray classification? Bioinformatics 20(3): 374-380. 16. Buckland, S.T., Elston, D.A., 1993. Empirical models for the spatial distribution of wildlife. Journal of Applied Ecology 30: 478-495. 17. Buhrnheim, C.M., Cox-Fernandes, C., 2003. Structure of fish assemblages in Amazonian rain-forest streams: effects of habitats and locality. Copeia 2003(2): 255-262. 18. Cavendish M.G., Duncan M.I., 1986. Use of the instream flow incremental methodology: a tool for negotiation. Environmental Impact Assessment Review 6: 347-363. 19. Chambers, P.A., Prepas, E.E., Hamilton, H.R., Bothwell, M.L., 1991. Current velocity and its effect on aquatic macrophytes in flowing waters. Ecological Applications 1: 249-257. 20. Clark, J.D., Dunn, J.E., Smith, K.G., 1993. A multivariate model of female black bear use for a geographic information system. Journal of Wildlife Management 57: 519-526. 21. Cooper, S.D., Walde, S.J., Peckarsky, B.L., 1990. Prey exchange rates and the impact of predators on prey populations in streams. Ecology 71: 1503-1514. 22. Daily, G.C., Reichert, J.S., Meyers, J.P., 1997. Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DC, USA. 23. Dahl, J., Greenberg, L., 1996. Effects of habitat structure on habitat use by Gammarus pulex in artificial streams. Freshwater biology 36(3): 487-495. 24. Dahl, J., 1998. Effects of a benthivorous and a drift-feeding fish on a benthic stream assemblage. Oecologia 116: 426-432. 25. Dawson, F.H., Kern-Hansen, U., 1978. Aquatic weed management in natural streams: the effect of shade by marginal vegetation. Verhandlungen Internationale Vereinigung fur Theoretische und Angewandte Limnologie 20: 1451-1456. 26. Dotu Y., Mito S., 1955. Life history of the gobioid fish, Sicydium japonicum Tanaka. Science Bulletin of the Faculty of Agriculture Kyushu University 10: 120-126. 27. Dorgeloh, W.G., 2001. A draft habitat suitability model for roan antelope in the Nylsvley nature Reserve, South Africa. African Journal of Ecology 39: 313-316. 28. Dunbar M.J., Gustard A., Acreman M.C., Elliott C.R.N., 1998. Review of overseas approaches to setting river flow objectives. Institute of Hydrology, Wallingford, UK. 29. Filipe A.F., Cowx I.G., Collares-pereira M.J., 2002. Spatial modelling of freshwater fish in semi-arid river systems: a tool for conservation. River Research and Applications 18: 123-136. 30. Fladung M., Scolten M., Thiel R., 2003. Modelling the habitat preferences of preadult and adult fishes on the shoreline of the large, lowland Elbe River. Journal of Applied Ichthyology 19: 303-314. 31. Francisco L., Lilian C., Helena S.G., Andre B.D.C., Denise D.C.R., 2005. Riffle and pool fish communities in a large stream of southeastern Brazil. Neotropical Ichthyology 3(2): 305-311. 32. Fukuda, S., Hiramatsu, K., 2008. Prediction ability and sensitivity of artificial intelligence-based habitat preference models for predicting spatial distribution of Japanese medaka (Oryzias latipes). Ecological Modelling 215(4): 301-313. 33. Gelwick, F.P., 1990. Longitudinal and temporal comparisons of riffle and pool fish assemblages in a Northeastern Oklahoma Ozark stream. Copeia 1990: 1072-1082. 34. Gorman, O.T., Karr, J.R., 1978. Habitat structure and stream fish communities. Ecology 59: 507-515. 35. Gozlan R.E., Mastrorillo S., Copp G.H., Lek S., 1999. Predicting the structure and diversity of young-of-the-year fish assemblages in large rivers. Freshwater Biology 41: 809-820. 36. Guay J.C., Boisclair D., Rioux, D., Leclerc M., 2003. Development and validation of numerical habitat models for juveniles of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 57: 2065-2075. 37. Hynes, H.B.N., 1970. The ecology of running waters. Liverpool University Press, Liverpool. 38. Ibarra A.A., Gevrey M., Park Y.S., Lim P., Lek S., 2003. Modelling the factors that influence fish guilds composition using a back-propagation network. Ecological Modelling 160: 281-290. 39. Iida M., Watanabe S., Shinoda A., Tsukamoto K., 2008. Recruitment of amphidromous goby Sicypoterus japonicus to the estuary of the Ota River, Wakayama, Japan. Environmental Biology of Fishes 83: 331-341. 40. Inoue, M., Miyayoshi, M., 2006. Fish foraging effects on benthic assemblages along a warm-temperate stream: differences among drift feeders, benthic predators and grazers. Oikos 114: 95-107. 41. Jackson, J.K., Fureder, J.K., 2006. Long-term studies of freshwater macroinvertebrates: a review of the frequency, duration and ecological significance. Freshwater Biology 51(3): 591-603. 42. Jorde K., Schneider M., Peter A., Zoellner F., 2001. Fuzzy based models for the evaluation of fish habitat quailty and instream flow assessment. Proceedings of the 3rd International Symposium on Environmental Hydraulics, Tempe, AZ. 43. Jowett, I.G., Duncan, M.J., 1990. Flow variability in New Zealand rivers and its relationship to in-stream habitat and biota. New Zealand Journal of Marine and Freshwater Research 24: 305-317. 44. Jowett, I.G., 1993. A method for identifying pool, run, and riffle habitats from physical measurements. New Zealand Journal of Marine and Freshwater Research 27: 241-248. 45. Jowett, I.G., 1997. Instream flow methods: a comparison of approaches. Regulated Rivers: Research and Management 13: 115-127. 46. Jowett, I.G., Biggs, B.J.F., 2009. Application of the ‘natural flow paradigm’ in a New Zealand context. River Research Applications 25: 1126-1135. 47. Jowett, I.G., Duncan, M.J., 2011. Effectiveness of 1D and 2D hydraulic models for instream habitat analysis in a braided river. Ecological Engineering, doi: 10.1016/j.ecoleng.2011.06.036 48. Kemp, J.L., Harper, D.M., Crosa, G.A., 2000. The habitat-scale ecohydraulics of rivers. Ecological Engineering 16: 17-29. 49. Kerle F., Zollner F., Schneider M., Kappus B., Baptist M.J., 2002. Modelling of long-term fish habitat changes in restored secondary floodplain channels of the River Rhine. Fourth International Ecohydraulics Symposium, Cape Town, South Africa. 50. King J.M., Tharme R.E., Brown C.A., 1999. Definition and implementation of instream flows. Southern Waters Ecological Research and Consulting, Cape Town, South Africa. 51. Kliskey, A.D., Lofroth, E.C., Thompson, W.A., Brown, S., Schreier, H., 1999. Simulating and evaluating alternative resource-use strategies using GIS-based habitat suitability indices. Landscape and Urban Planning 45: 163-175. 52. Kohavi, R., 1995. Astudy of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of Fourteenth International Joint Conference on Artificial Intelligence (IJCAI) Montreal, CA, 1137-1143. 53. Koza, J., 1992. Genetic programming: on the programming of computers by natural selection, MIT Press, Cambridge, Mass. 54. Lamouroux, N., Olivier, J.-M., Persat, H., Pouilly, M., Souchon, Y., Statzner, B., 1999. Predicting community characteristics from habitat conditions: fluvial fish and hydraulics. Freshwater Biology 42: 275-299 55. Leclerc M., St-Hilaire A., Bechara J.A., 2003. State-of-the-art and perspectives of habitat modeling for determining conservation flows. Canadian Water Resources Journal 28(2): 153–172. 56. Lee, J.H., Kil, J.T., Jeong, S., 2010. Evaluation of physical fish habitat quality enhancement designs in urban streams using a 2D hydrodynamic model. Ecological Engineering 36: 1251-1259. 57. Leopold, L.B., 1969. The rapids and the pools-Grand Canyon. United States Geological Survey Professional Paper 669-D: 131-145. 58. Ligon, F.K., Dietrich, W.E., Trush, W.J., 1995. Downstream ecological effects of dams. Bioscience 45(3): 183-192. 59. Lin, Y.P., Wang, C.L., Yu, H.H., Huang, C.W., Wang, Y.C., Chen, Y.W., Wu, W.Y., 2011. Monitoring and estimating the flow conditions and fish occurrence probability under various flow conditions at reach scale using genetic algorithms and kriging methods. Ecological Modelling 222(3): 762-775. 60. Loar J.M., Sale M.J., Cada G.F., 1986. Instream flow needs to protect fishery resources. Water Forum ’86: World Water Issues in Evolution. Proceedings of ASCE Conference, Long Beach, California, 4-6. 61. Madsen, T.V., Sondergaard, M., 1993. The effects of current velocity on the photosynthesis of Callitriche stagnalis scop. Aquatic Botany 15: 187-193. 62. Madsen, T.V., Enevoldsen, H.O., Jorgensen, T.B., 1993. Effects of water velocity on photosynthesis and dark respiration in submerged stream macrophytes. Plant Cell Environment 16: 317-322. 63. Matthews, W.J., 1998. Patterns in freshwater fish ecology. Chapman and Hall, New York. 64. McCully, P., 1996. Silenced rivers-The ecology and politics of large dam. Zed Books, London. 65. McDowall, R.M., 1988. Diadromy in Fishes. Migrations between Freshwater and Marine Environments. Croom Helm, London. 66. Mitsch, W.J., Jorgensen, S.E., 1989. Introduction to ecological engineering. In: Mitsch, W.J., Jorgensen, S.E. (Eds.), Ecological engineering: an introduction to ecotechnology. Wiley, New York, 3-12. 67. Mitsch, W.J., 1996. Ecological engineering: A new paradigm for engineers and ecologists. In: Schulze, P.C. (Ed.), Engineering within ecological constraints. National Academy Press, Washington, DC, 114-132. 68. Moody, L.F., 1944. Friction factor for pipe flow. ASME Trans Transactions On Mechatronics 66: 671-683. 69. Moore, K., Furniss, M., Firor, S., Love, M., 1999. Fish passage through culverts an annotated bibliography. USDA Forest Service, Six Rivers National Forest Watershed Interactions Team, Eureka, CA. 70. Monk, W.A., Wood, P.J., Hannah, D.M., Wilson, D.A., Extence, C.A., Chadd, R.P., 2006. Flow variability and macroinvertebrate community response within riverine systems. River Research and Applications 22: 595-615. 71. Moutona A.M., Schneiderb M., Depestelea J., Goethalsa P.L.M., Pauwa N.D., 2007. Fish habitat modelling as a tool for river management. Ecological Engineering 29(3): 305-315. 72. Moyle P.B., Vondracek B., 1985. Persistence and structure of the fish assemblage in a small California stream. Ecology 66: 1-13. 73. Muttil, N., Lee, J.H.W., 2005. Genetic programming for analysis and real-time prediction of coastal algal blooms. Ecological Modelling 189(3–4): 363-376. 74. Naiman, R.J., Magnuson, J.J., McKnight, D.M., Stanford, J.A., 1995. The freshwater imperative: a research agenda. Island Press, Washington, DC, USA. 75. Nelson, S.G., Parham, J.E., Tibbatts, R.B., Camacho, F.A., Leberer, T., Smith, B.D., 1997. Distribution and microhabitats of the amphidromous gobies in streams of Micronesia. Micronesica 30: 83-91. 76. Noss, R.F., Cooperrider, A.Y., 1994. Saving nature’s legacy: protecting and restoring biodiversity. Island Press, Washington, DC. 77. Nykanen M., Huusko A., 2004. Transferability of habitat preference criteria for larval European grayling (Thymallus thymallus). Canadian Journal of Fisheries and Aquatic Sciences 61: 185-192. 78. Park, S., 2001. Habitat-based population viability analysis for the Asiatic Black Bear in Mt. Chiri national park, Korea. CEM:s Skriftserie 3: 149-165. 79. Oberdorff T., Pont D., Hungueny B., Chessel D., 2001. A probabilistic model characterizing fish assemblages of French rivers: a framework for environmental assessment. Freshwater Biology 46: 399-415. 80. Orth D.J., Maughan O.E., 1983. Microhabitat preferences of benthic fauna in a woodland stream. Hydrobiologia 106: 157-168. 81. Parasuraman K., Elshorbagy A., 2008. Toward improving the reliability of hydrologic prediction: model structure uncertainty and its quantification using ensemble-based genetic programming framework. Water Resources Research, 44, doi:10.1029/2007WR006451 82. Pearson, D.L., 1994. Selecting indicator taxa for the quantitative assessment of biodiversity. Philosophical Transactions: Biological Sciences 345: 75-79. 83. Peterson, C.G., Stevenson, R.J., 1992. Resistance and resilience of lotic algal communities-Importance of disturbance timing and current. Ecology 73: 1445-1461. 84. Poff, N.L., Ward, J.V., 1989. Implications of stream flow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Canadian Journal of Fisheries and Aquatic Sciences 46: 1805-1817. 85. Poff, N.L., Allan, J.D., 1995. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 76: 606-627. 86. Postel, S.L., 2000. Entering an era of water scarcity: The challenges ahead. Ecological Applications 10(4): 941-948. 87. Rosenfeld, J., 2000. Effects of fish predation in erosional and depositional habitats in a temperate stream. Canadian Journal of Fisheries and Aquatic Sciences 57: 1369-1379. 88. Shen K.N., Tzeng W.N., 2002. Formation of a metamorphosis check in otoliths of the amphidromous goby sicyopterus japonicus. Marine Ecological Progress Series 228: 205-211. 89. Sheppard J.D., Johnson J.H., 1985. Probability of use for depth, velocity and substrate by subyearling coho salmon and steelhead in Lake Ontario tributary streams. North American Journal of Fisheries Management 5(2B): 277-282. 90. Stalnaker C.B., 1982. Instream flow assessments come of age in the decade of the 1970’s. In: Mason W.T., Iker S. (Eds.), Research on Fish and Wildlife Habitat. US Environmental Protection Agency, Washington, DC, 119-142. 91. Statzner, B., Gore, J.A., Resh, V.H., 1988. Hydraulic stream ecology: observed patterns and potential applications. Journal of the North American Benthological Society 7: 307-360. 92. Tanaka, S., 1909. Descriptions of one new genus and ten new species of Japanese fishes. Journal of the College of Science, Imperial University of Tokyo 27 (8): 1-27. 93. Tharme R.E., 1996. Review of international methodologies for the quantification of the instream flow requirements of rivers. Water law review final report for policy development for the Department of Water Affairs and Forestry, Pretoria. Freshwater Research Unit, University of Cape Town, South Africa. 94. Tharme R.E., King J.M., 1998. Development of the building block methodology for instream flow assessments, and supporting research on the effects of different magnitude flows on riverine ecosystems. Water Research Commission Report 576. 95. Tharme R.E., 2003. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications 19: 397-441. 96. Thorp, J.H., 1986. Two distinct roles for predators in freshwater assemblages. Oikos 47: 75-82. 97. Trihey, E.W., Stalnaker, C.B., 1985. Evolution and application of instream flow methodologies to small hydropower developments: an overview of the issues. In: Olson F.W., White R.G., Hamre R.H. (Eds), Proceedings of the Symposium on Small Hydropower and Fisheries. Aurora, CO. 98. Tsai, W.S., Dai, C.F., Yang, I.C., Tung, C.P., 2005. Using genetic programming to modeling spatial distribution of corals and the impacts of climatic changes: a case study from Taiwan. Proceedings of the 10th International Coral Reef Symposium, Okinawan, Japan: 1441-1444. 99. Tung, C.P., Lee, T.Y., Yang, Y.C., Chen, Y.J., 2009. Application of genetic programming to project climate change impacts on the population of Formosan landlocked salmon. Environmental Modelling and Software 24: 1062-1072. 100. USEPA, 2011. Biological indicators of watershed health. http://www.epa.gov/bioiwebl/index.html 101. U.S. Fish and Wildlife Service (USFWS), 1980. Habitat Evaluation Procedures (HEP). Ecological services manual 102. US Department of Interior, Fish and Wildlife Service, Division of Ecological Services, Washington, DC. 102. USGS, 2002. 2D Hydrodynamic/Habitat Modeling Workshop. National Conservation Traning Center. 103. Vadas, R.L., Orth, D.J., 2001. Formulation of habitat suitability models for stream fish guilds: do the standard methods work? Transactions of the American Fisheries Society 130: 217-235. 104. Van Horne, B., 1983. Density as a misleading indicator of habitat quality. Journal of Wildlife Management 47: 893-901. 105. Vanderploeg, H.A., Scavia, D., 1979. Two electivity indices for feeding with special reference to zooplankton grazing. Journal of the Fisheries Research Board of Canada 36: 362-365. 106. Vehanen, T., Huusko, A., Yrjana, T., Lahti, M., Maki-Petays, A., 2003. Habitat preference by grayling (Thymallus thymallus) in an artificially modified, hydropeaking riverbed: a contribution to understand the effectiveness of habitat enhancement measures. Journal of Applied Ichthyology 19: 15-20. 107. Vismara, R., Azzellino, A., Bosi, R., Crosa, G., Gentili, G., 2001. Habitat suitability curves for brown trout (Salmo trutta fario L.) in the River Adda, northern Italy: comparing univariate and multivariate approaches. Regulated Rivers: Research and Management 17: 37-50. 108. Waddle, T., 2010. Field evaluation of a two-dimensional hydrodynamic model near boulders for habitat calculation. River Research and Applications 26: 730-741. 109. Wadeson, R.A., 1994. A geomorphological approach to the identification and classification of instream flow environments. South African Journal of Aquatic Sciences 20: 38-61. 110. Wooster, D., Sih, A., 1995. A review of the drift and activity responses of stream prey to predator presence. Oikos 73: 3-8. 111. Wu, J.G., Huang, J.H., Han, X.G., Xie, Z.Q., Gao, X.M., 2003. Three-gorges dam-Experiment in habitat fragmentation? Science 300: 1239-1240. 112. Yi, Y., Wang, Z., Yang, Z., 2010. Two-dimensional habitat modeling of Chinese sturgeon spawning sites. Ecological Modelling 221: 864-875. 113. Yu, S.L., Peters, E.J., 1997. Use of froude number to determine habitat selection by fish. Rivers 6(1): 10-18. 114. Yu, S.L., Lee, T.W., 2002. Habitat preference of the stream fish, Sinogastromyzon Puliensis (Homalopteridae). Zoological Studies 41(2): 183-187. 115. 王承龍,2010。應用克利金與逐步模擬分析魚類喜好流況之時空變異-以大屯溪日本禿頭鯊為例。國立台灣大學生物環境系統工程研究所,碩士論文。 116. 王漢泉,2002。環境檢驗所環境調查研究年報9:207-236。 117. 行政院國科會,2003。永續台灣的挑戰:河川與海洋專刊。 118. 余燕妮,2006。台灣河川特有魚種之分區適合度曲線研訂。國立中央大學土木工程研究所,碩士論文。 119. 吳振欣,2008。利用河川棲地二維模式評估防砂壩、魚道對河川棲地之影響-以北勢溪為例。中華大學土木與工程資訊學系,碩士論文。 120. 吳富春、李國昇,1998。集集共同攔河堰之環境生態基流量評估。水資源管理研討會:216-237。 121. 汪靜明,1999。大甲溪魚類棲息地改善及其生態評估研究。中日溪流生態保育研討會論文集:p119-137。 122. 汪靜明,2000。大甲溪水資源環境教育。經濟部水資源局,p30-45。 123. 汪靜明,2002。台北縣大屯溪河川生態調查及溪流生態工法教育宣導計畫成果報告。中華民國生態資訊協會。 124. 汪靜明,2003。水水台灣的背景與前瞻:生態視窗-台灣水環境的永續教育。時報文教基金會半年刊10:p3-5。 125. 汪靜明,2004。河川生態工法之生態評估原理。水資源管理會刊6(2):p14-24。 126. 李永安,2007。大漢溪上游河川魚類棲地適合度曲線之研究。國立中央大學土木工程研究所,碩士論文。 127. 李宗祐,2003。氣候變遷對櫻花鈎吻鮭棲地水溫及族群數量之影響。國立台灣大學生物環境系統工程研究所,碩士論文。 128. 李訓煌、吳瑞賢、莊明德、陳有祺、溫博文、廖光正、周文杰、李德旺、張世倉、陳榮宗,2007、2008。河川棲地二維模式(River 2D)之應用研究(1/2~2/2)。經濟部水利署水利規劃試驗所。 129. 李訓煌、吳瑞賢、陳有祺、何東輯、莊明德、李德旺、溫博文、周文杰,2010。河川棲地二維模式(River 2D)之應用研究-以筏子溪為例。水保技術5(1):p1-11。 130. 李德旺、邱建介、林維玲、于錫亮,1998。卑南溪流域高身鏟頜魚之分佈與環境因子的關係。中華林學季刊31(3):p219-225。 131. 李德旺,1999。埔里中華爬岩鰍之族群分布調查。特有生物研究保育中心八十八年度試驗研究計畫執行成果。 132. 李德旺,2003。台灣白魚之族群調查研究,特有生物研究保育中心九十一年度試驗研究計畫執行成果。 133. 李德旺、于錫亮,2005。埔里中華爬岩鰍棲地環境之需求。特有生物研究7(2)︰p13-22。 134. 卓大翔,2007。應用空間統計與水文距離於大屯溪魚類與棲地之時空間變異研究。國立台灣大學生物環境系統工程研究所,碩士論文。 135. 林志融,2004。棲地適宜性分析應用於生態廊道規劃之研究-以山羌及有勝溪流域為例,國立東華大學自然資源管理研究所,碩士論文。 136. 林裕彬,2004,快速生物評估方法應用之可行性分析-以大屯溪為例。農工研討會。 137. 林曜松、梁世雄,1997。魚類資源調查技術手冊。行政院農業委員會。 138. 林鎮洋、陳彥璋、吳明聖,2004。河溪生態工法。明文書局股份有限公司。 139. 武為瑤,2011。應用遺傳規劃法與二維水理模式評估河川魚類棲地-以大屯溪日本禿頭鯊為例。國立台灣大學生物環境系統工程研究所,碩士論文。 140. 柳文成、胡通哲、謝文雄,2004。溪流生態工法之規劃-以霧社溪為例。聯合學報24:p73-104。 141. 胡通哲、葉明峰,2002。基隆河員山子至八堵河段環境基流量之研究。中華水土保持學報33(3):p241-247。 142. 郭一羽,2001。水域生態工程。中華大學水域生態環境研究中心,p314。 143. 翁智鴻,2004。各種流況對魚類棲地可用面積之影響-以枋腳溪為例。國立台北科技大學環境規劃管理研究所,碩士論文。 144. 張楨驩,2002。河川魚類棲地分佈之推估與分析研究-以卑南溪新武呂河段為例。國立中央大學土木工程研究所,碩士論文。 145. 梁世雄,2004。淡水水域生物監測之採樣器材介紹及資料分析與應用。高雄師範大學生物科學研究所。 146. 梁麗芬,2003。河川棲地及歧異度之變化與時空因素之探討。國立中央大學土木工程研究所,碩士論文。 147. 陳伸安,2006。二維水理棲地模式運用於南崁溪生態規劃之研究。國立中央大學土木工程研究所,碩士論文。 148. 陳芳瑜,2007。台灣河川棲地型態之研究。國立中央大學土木工程研究所,碩士論文。 149. 陳義雄、方力行,1996。台灣河川湖泊魚類的生態特性與棲息地現況。1999年生物多樣性研討會論文集。 150. 陳義雄、方力行,1999。台灣淡水及河口魚類誌。 151. 游筱玄,2009。地理資訊系統於河川系統層級分析之研究。國科會大專學生參與專題研究計畫研究成果報告。 152. 曾晴賢,1986。台灣的淡水魚類。台灣省政府教育廳。 153. 童慶斌,2008。啟發式演算法上課講義。國立台灣大學生物環境系統工程學系。 154. 楊奕岑,2004。模擬氣候變遷對櫻花鈎吻鮭域外放流棲地水溫與潛在族群數之衝擊。台灣大學生物環境系統工程研究所,碩士論文。 155. 葉明峰、張世倉、李訓煌,2000。濁水溪上游河段魚類族群最低流量之研究(2/3)。行政院農業委員會特有生物研究保育中心試驗計畫執行成果(棲地生態組)。 156. 葉明峰,2002。河川魚類適合度曲線調查技術。河川生態基準流量評估技術研討會,講題E:p1-15。 157. 賴建盛,1996。防砂壩對櫻花鉤吻鮭物理棲地影響之研究。國立台灣大學地理研究所,碩士論文。 158. 戴永禔,1992。臺灣櫻花鉤吻鮭之族群生態學研究,國立台灣大學動物研究所,博士論文。 159. 蘇六裕,1993。高身鏟頷魚棲地利用及生態特性研究,國立中山大學海洋生物研究所,碩士論文。 160. 蘇水龍,2012。河川復育之生物評估-以二仁溪污染整治計畫為例。長榮大學職業安全與衛生學系,碩士論文。 161. 蘇瑋哲,2008。魚類個體生態矩陣於溪流棲息地模擬之應用。國立成功大學水利及海洋工程研究所,碩士論文。 162. 揚津豪,2006。河川生態廊道與魚類物理棲地之水理模式研究。國立台灣大學土木工程研究所,碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63991 | - |
| dc.description.abstract | 河川生態工程為近年來治理河川的基礎上,其主要尋求接近自然的工程方法,因此若能於工程施作前,建立出良好的模擬模式,不但可提供河川生態工程方向,也能增加河川治理之效益。而河川棲地的模擬中,棲地適合度分析為重要的步驟之一,棲地適合度指數是建立目標物種與棲地環境因子之間的關係,而水理棲地模式可模擬河川斷面及計算魚類權重可用面積,兩者相輔而成為重要的河川生態分析工具。
前人於河川棲地模擬之研究,多以魚類之棲地喜好性對於棲地環境因子的相互關係建立單一模式,然而為了考量各種流況型態提供魚類不同的生態需求,例如:高溶氧的淺瀨為食物密集的區域、平靜的深潭適合當作避難所,因此需以不同標準的模擬模式來描述其行為,才能更加符合現況。本研究在新北市淡水區的大屯溪流域,進行生態的調查,並以日本禿頭鯊當作目標物種,針對流速、水深對應之魚類出現機率,來建立棲地適合度指數。其方法有三種,第一,將每個棲地環境因子分別建立出適合度值,再透過相乘而得到混合的棲地適合度指數,稱作傳統模式;第二,以遺傳規劃法的優化機制,找尋棲地環境因子之間的最佳方程式,進而求得棲地適合度指數,稱作改良模式;第三,將流速、水深以0.32m/s、0.29m為界線,劃分成四種流況,再透過遺傳規劃法搜尋最佳方程式,得到一聯合棲地適合度指數,稱作分類模式。最終再經由二維水理棲地模式River 2D模擬出流況與魚類權重可用面積之空間分佈,進一步比較三種模式的結果。 研究結果顯示,日本禿頭鯊出現頻度與流況發生頻度之相關性高達0.96,因此過去普遍使用的第二型適合度指數,並無法反映出魚類真實喜好的環境。此外,在模式的率定、驗證方面,改良模式也以均方根誤差0.0718、0.1001,較傳統模式的0.1215、0.1289還來得好,說明遺傳規劃法在考慮變數之間的關係後,確實能有較佳的預測結果,另一方面,分類模式則是以0.1127、0.1316不如改良模式,所以改良模式在採用整體資料下,其可信度及準確度還是高於分類模式。最後,在魚類權重可用面積計算之結果,發現分類模式可以避免其他兩種模式,在棲地面積空間分佈中,有低估或是均質化的現象,也期望此模式後續在探討不同魚類行為時(如:產卵、覓食),能有更實用的價值。 | zh_TW |
| dc.description.abstract | River ecological engineering is the engineering method to renovate river approaching to nature in recent years. Establishing good simulation model before executing not only provides a direction for river ecological engineering, but improves the benefits of river management. During simulating river habitat, Habitat Suitability Analysis is one of the most important processes. Habitat suitability index (HSI) builds the relationship between target species and environmental factors of habitat and physical habitat model simulate the river section and calculate weighted usable area (WUA). Combining both of them become a crucial analysis tool to river ecosystem.
The previous study in river habitat simulation mostly aims at the fish preference of environmental factors of habitat to build individual model. However, in order to consider different fish ecological demand in various flow conditions, for example, riffle with high oxygen is full of food sources, pool is suitable to be a shelter, it needs diverse standard simulation model for describing fish activities to approach reality. The study area is Datuan Stream located in Tamsui District, New Taipei City and the target species is monk goby (Sicyopterus japonicus). Fish presence probabilities for each velocity and water depth establish HSI. There are three methods: First, establish suitability index (SI) by each factor separately, and then multiple all SIs together to obtain a composite HSI, which called “traditional model”. Second, Search for optimal function in factors by genetic programming (GP), and obtain HSI, which called “modified model”. Third, divide into four flow conditions by velocity 0.32 (m/s) and water depth 0.29(m), and obtain united HSI, which called “classified model”. Finally, simulate river flow and calculate the spatial distribution of WUA, and then compare the result of three models. The result reveals that the correlation between frequency of monk goby presence and frequency of flow condition is up to 0.96. Therefore, Category II HSI which is the most common method can not reflect favorite environment of fish in reality. In addition, when it comes to the calibration and validation of model, the root mean square error (RMSE) of modified model is better than traditional model by 0.0718, 0.1001, and 0.1215, 0.1289. While taking the relationship between variables into consideration by GP, it has a better predictive effect. On the other hand, the RMSE of classified model is worse than modified model by 0.1127, 0.1316. All in all, the confidence and accuracy of modified model is greater than other two models. In the end, the result of calculating WUA shows that classified model could avoid underestimation or homogeneity, which may occur in other two models. While researching in different activities of fish (ex: spawning, preying), we expect classified model to be practical and valuable in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:25:33Z (GMT). No. of bitstreams: 1 ntu-101-R99622025-1.pdf: 3170392 bytes, checksum: a1d61b82605488e02e47ad618b8050b7 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 圖目錄 viii 表目錄 x 第一章 緒論 1 1.1 研究緣起 1 1.2 研究目的 4 1.3 研究流程圖 5 第二章 文獻回顧 8 2.1河川棲地環境因子與生物 8 2.1.1生態基流量 8 2.1.2河川中的指標生物 9 2.2棲地適合度分析 10 2.2.1棲地適合度之概述 10 2.2.2棲地適合度之發展 11 2.2.3棲地適合度之應用 12 2.3模擬分析方法之相關研究 16 2.3.1遺傳規劃法應用於環境 16 2.3.2水理棲地模式 17 2.4流況之影響及其分類 23 第三章 理論與方法 28 3.1 研究區域 28 3.1.1 大屯溪流域 28 3.1.2 研究河段 31 3.1.3 目標物種 34 3.2 現地調查方法 36 3.2.1魚類採集方式 36 3.2.2棲地環境因子參數收集 36 3.2.3河床地形調查 37 3.3 分析方法之應用 38 3.3.1適合度曲線 38 3.3.2遺傳演算法 40 3.4二維水理棲地模式River 2D 44 3.4.1模式簡介 44 3.4.2模式主要理論 45 3.4.3流體方程式之數值模式 47 3.4.4數值高程模型原理與應用 49 3.4.5棲地類型與河床底質 50 3.4.6魚類棲地模式 51 3.5地理資訊系統 52 第四章 研究結果與討論 53 4.1棲地背景調查 53 4.1.1大屯溪水理資料 53 4.1.2魚況及目標魚種 57 4.1.3流況與魚類數量頻度分析 59 4.2適合度曲線之建立 61 4.2.1棲地適合度曲線型態比較 61 4.2.2遺傳規劃法 65 4.2.3遺傳規劃法考慮流況分類 69 4.2.4估計不確定性 75 4.3二維水理棲地模式比較 76 4.3.1模式建立與驗證 76 4.3.2魚類棲地模擬結果比較 77 4.3.3分類流況對棲地模擬的影響 80 4.3.4與採樣點的對照 82 第五章 結論與未來建議 84 5.1結論 84 5.2未來建議 86 參考文獻 87 附錄一 大屯溪流域魚類資源調查資料 100 | |
| dc.language.iso | zh-TW | |
| dc.subject | 流況分類 | zh_TW |
| dc.subject | 棲地適合度指數 | zh_TW |
| dc.subject | 權重可用面積 | zh_TW |
| dc.subject | 遺傳規劃法 | zh_TW |
| dc.subject | River 2D | zh_TW |
| dc.subject | flow condition | en |
| dc.subject | habitat suitability index | en |
| dc.subject | weighted usable area | en |
| dc.subject | genetic programming | en |
| dc.subject | River 2D | en |
| dc.title | 應用適合度曲線與遺傳規劃法於河川魚類棲地模擬-分類流況法 | zh_TW |
| dc.title | Application of habitat suitability curve and genetic programming to assess the habitat preference of riverine fish: The classification of flow condition | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 童慶斌,陳彥璋,李明旭,任秀慧 | |
| dc.subject.keyword | 流況分類,棲地適合度指數,權重可用面積,遺傳規劃法,River 2D, | zh_TW |
| dc.subject.keyword | flow condition,habitat suitability index,weighted usable area,genetic programming,River 2D, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
