請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63990完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳正剛(Argon Chen) | |
| dc.contributor.author | Yu-Rong Hsu | en |
| dc.contributor.author | 許妤蓉 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:25:31Z | - |
| dc.date.available | 2017-08-28 | |
| dc.date.copyright | 2012-08-28 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | [1] J.W. Johnson, 2000. A heuristic method for estimating the relative weight of predictor variables in multiple regression. Multivariate Behavioral Research, 35, 1-19.
[2] Stephen Pollock, 2002. Recursive Estimation in Econometrics (no. 462, ISSN 1473-0278). Queen Mary : University of London. [3] Richard M.Johnson, 1966. The minimal transformation to orthonormality. Psychometrika,31, 61-66. [4] Eckart, C. and Young, G. 1936. The approximation of one matrix by another of lower rank. Psychometrika, 1, 211-218. [5] Gibson,W.A., 1962. Orthogonal predictors: A possible resolution of the Hoffman-Ward controversy. Psychological Reports, 11,32-32 [6] Budescu, D.V. ,1993. Dominance Analysis: A new approach to the problem of relative importance of predictors in multiple regression. Psychological Bulletin, 114, 542-551 [7] Rodgers, J.L. , Nicewander ,W. A. ,and Toothaker ,L. , 1984. Linearly independent, orthogonal, and uncorrelated variables. The American Statistician, 38( 2), 133-134. [8] Christian Walter & Jose Lopez. ,1997. Is implied correlation worth calculating? Evidence from foreign exchange options and historical data. Working Papers in Applied Economic Theory 2000-02. Federal Reserve Bank of San Francisco. [9] Gauss K.F.,1777-1855, 1821, 1823, 1826. Theoria combinationis observationum erroribus minimis obnoxiae,(Theory of the combination of observations least subject to error), French translation by J. Bertrand (1855),Methode de Moindres Carres : Memoires sur la combinaison des Observations par C.-F.Gauss, Mallet-Bachelier, Paris, English translation by G.W. Stewart (1995), Classics, in Applied Mathematics no. 11, SIAM Press, Philadelphia. [10] Lebreton, J.M. , Ployhart, R.E. , and Ladd, R.T. ,2004. A Monte Carlo comparison of relative importance methodologies. Organizational Research Methods, 7, 258-282. [11] Chao, Y. E. , Zhao, Y. , Kupper, L. L. , and Nylander-French, L.A., 2008. Quantifying the relative importance of predictors in multiple linear regression analyses for public health studies. Journal of Occupational and Environmental Hygiene, 5(8), 519 - 529. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63990 | - |
| dc.description.abstract | 本研究在Gauss,K.F.(1821,1823,1826)指數加權遞迴之最小平方法(exponentially weighted recursive least square)的基礎之下,研究指數加權對複迴歸係數的影響,並針對指數加權導致之估計不穩特性,提出有別於針對每筆新收集到的資料加權,而是隨著時間以區塊(block)為單位對資料加權,發展出區塊加權遞迴之最小平方法(block-weighted recursive least square),減低複迴歸係數的變異程度。比較指數加權遞迴之最小平方法與區塊加權遞迴之最小平方法時,選出在不同資料量、權重、區塊大小時各自有最佳表現的組合,並觀察區塊加權遞迴之最小平方法對於原本演算法的改進程度。經實驗發現在變數個數少的時候,區塊加權遞迴之最小平方法才會有改善的空間。經多個案例研究發現,以區塊(block)做加權並不會改善指數加權遞迴之最小平方法之穩定性。
複迴歸分析在變數間不存在共線性關係時,迴歸係數之t統計量及檢定可代表各變數的重要性程度,但存在共線性關係時,文獻使用Johnson[1]的Dominance index先將原始變數轉換成彼此正交(orthogonal)且無相依性(uncorrelated)的最佳估計,再進行迴歸分析以及變數重要性的估算。然而製程可能隨著時間變動,因此本研究將最新收集到的資料給予較大的權重,權重依時間呈指數遞減,發展出指數加權之變數相對重要性方法。而加權的方法又可分成兩種,第一種是利用指數加權移動相關係數(EWMC),第二種是利用指數加權迴歸法(exponentially weighted regression),兩種方法各有其優劣。 同時考慮到資料變化的趨勢,利用指數加權移動相關係數(EWMC)所估計的指數加權之相對重要性在我們研究的案例中表現相對較好。研究方法上,將會以模擬案例及實際半導體製程資料驗證本研究所提出的兩種方法的偵測能力。 | zh_TW |
| dc.description.abstract | In this research, we first focus on the effect of applying exponential weight to the regression analysis data based on the exponentially weighted recursive least square method. Gauss,K.F.(1821,1823,1826) . Because of the unstability of regreesion coefficients resulting from the weighting scheme, we attempt to propose a new method which is called the block-weighted recursive least square method. The proposed method applies weights to a block of observations in order to reduce the variation of regreesion coefficients. We use simulations to compare the results of the exponentially weighted recursive least square method and the block-weighted recursive least square method. It is found that applying weights to the block does not significantly imporove the variation of the regreesion coefficients through adding an additional parameter on the block size..
When the predictor variables are uncorrelated, we can simply use the t statistic as the test statistic of regression coefficient to find out the relative importance of each predictor variable. When the predictor variables are correlated, previous articles have shown that the sets of variables can be approximated by a set of uncorrelated variables that can be used for estimation of relative importance. (Johnson,2000). Since the manufacturing factors may undergo structural changes from time to time, we propose in this research applying the exponential weights to the data to capture the dynamic changes of causal effects. We propose two weighting schemes : exponentially weighted moving correlation (EWMC), and exponentially weighted regression. In our study , the exponentially weighted relative importance with EWMC is found better than the exponentially weighted regression when the response variable appears to be nonstationary. Simulated and actual semi-conductor engineering data are used to illustrate and validate the proposed methods. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:25:31Z (GMT). No. of bitstreams: 1 ntu-101-R99546009-1.pdf: 3952381 bytes, checksum: 88f1af6eddf7415193964590b1d4a0e0 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 第一章 緒論...1
1.1 研究背景...1 1.2 研究動機與目標...2 第二章 文獻探討...4 2.1 Recursive Least Square...4 2.2 Weighted Recursive Least Square...10 2.3 General Dominance Index...12 2.4 Johnson’ s Dominance Index...14 第三章 區塊加權遞迴之最小平方法(Block-WRLS)...20 3.1 Block-WRLS之理論與推導...21 3.2 Recursive R-square...33 3.3 WRLS與 block-WRLS偵測能力比較...34 第四章 Relative Importance Index之研究...39 4.1 變數相對重要性之理論值- Model R.I....40 4.2 由Centered資料求R.I....46 4.3 指數加權之變數相對重要性...52 4.3.1 Weighted R.I.- with Weighted Regression...55 4.3.2 Weighted R.I.- with EWMC...59 4.4 最適權重(λ)的選擇...63 4.4.1 最適權重的選擇-使用Weighted regression...63 4.4.2 最適權重的選擇-使用EWMC...64 第五章 指數加權之複迴歸與相對重要性偵測能力比較...66 案例1:變動的迴歸模型,變數X1, X2不存在共線性...68 Case 1.1 : R1~N(0,1) , R2~N(0,1)...69 Case 1.2 : R1~N(0,1) , R2~N(10,1)...75 案例2:變動的迴歸模型,變數X1, X2存在共線性...82 Case 2.1 : R1~N(0,1) , R2~N(0,1)...83 Case 2.2 : R1~N(0,1) , R2~N(10,1)...89 案例3:應用於半導體製程分析...98 第六章 結論與未來研究建議...109 參考文獻...112 | |
| dc.language.iso | zh-TW | |
| dc.subject | 指數加權迴歸法 | zh_TW |
| dc.subject | 指數加權移動相關係數 | zh_TW |
| dc.subject | 指數加權之相對重要性 | zh_TW |
| dc.subject | 相對重要性指標 | zh_TW |
| dc.subject | Dominance index | en |
| dc.subject | Exponentially weighted relative importance | en |
| dc.subject | Exponentially weighted moving correlation | en |
| dc.subject | Exponentially weighted regression | en |
| dc.title | 指數加權複迴歸及相對重要性指標之研究 | zh_TW |
| dc.title | Exponentially Weighted Multiple Regression and Relative Importance Index | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 汪上曉(David Shan-Hill Wong),桑慧敏(Wheyming Tina Song),鄭順林(Shuen-Lin Jeng),蔡雅蓉(Ya-Jung Tsai) | |
| dc.subject.keyword | 相對重要性指標,指數加權之相對重要性,指數加權移動相關係數,指數加權迴歸法, | zh_TW |
| dc.subject.keyword | Dominance index,Exponentially weighted relative importance,Exponentially weighted moving correlation,Exponentially weighted regression, | en |
| dc.relation.page | 114 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
