請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63987
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李慧梅 | |
dc.contributor.author | An-Jie Hung | en |
dc.contributor.author | 洪安傑 | zh_TW |
dc.date.accessioned | 2021-06-16T17:25:25Z | - |
dc.date.available | 2017-08-19 | |
dc.date.copyright | 2012-08-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-15 | |
dc.identifier.citation | 1.Adamson, A. W., Physical Chemistry of Surfaces , 4th
Ed. , John Wiley & Sons Publishers, New York, chap. 17 (1982). 2.Altshuller, A. P. and I. R. Cohen, “Application of Diffusion Cells to the Production of Known Concentrations of Gaseous Hydrocarbons,” Analytical Chemistry, 38, 802-810 (1960). 3.Atkinson, R. and S. M. Aschmann, “Rate constants for the gas-phase reaction of hydroxyl radicals with biphenyl and the monochlo-robiphenyls at 295 ± 1 K,” Environmental Science & Technology, 19, 462–464 (1985). 4.Bauer, S.H.R. and G. Kudielka, “Photocatalytic Oxidation of Gaseous Chlorinated Organics over Titanium Dioxide,” Chemsphere, 41, 1219-1225 (2000). 5.Bernstein J. A., N. Alexis, H. Bacchus, L. Bernstein, P. Fritz, E. Horner, N. Li, S. Mason, A . Nel, J. Oullette, K. Reijula, T. Reponen, J. Seltzer, A. Smith, and S.M. Tarlo, “The Health Effects of Nonindustrial Indoor Air Pollution,” Journal of Allergy and Clinical Immunology, 121(3), 585-591 (2008). 6.Brown, S. K., M. R. Sim, M. J. Avramson and C.N. Gray, “Concentrations of Volatile Organic Compounds in Indoor Air-A Review,” Indoor Air, 4, 123-134 (1994). 7.Capouet, M., J. Peeters, B. Nozi`ere and J.-F. M¨uller, “Alpha-pinene oxidation by OH: simulations of laboratory experiments,” Atmospheric Chemistry and Physics, 4, 2285–2311 (2004). 8.Chung-Hsuang Hung and Benito J. Marinas, “Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films,” Environmental Science & Technology, 31, 562-568 (1997). 9.Corinne Stocco, Morgan MacNeill, Daniel Wang, Xiaohong Xu, Mireille Guay, Jeff Brook and Amanda J. Wheeler, “Predicting personal exposure of Windsor, Ontario residents to volatile organic compounds using indoor measurements and survey data,” Atmospheric Environment, 42(23), 5905– 5912 (2008). 10.Dalton, J. S., P. A. Janes, N. G. Jonesm, J. A. Nicholson, K. R. Hallam and G. C. Allen, “Photocatalytic Oxidation of NOx Gases Using TiO2: A Surface Spectroscopic Approach,” Environmental Pollution, 120, 415-422 (2002). 11.Dibble, L. A., and G. B. Raupp, “Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Air Streams,” Environmental Science & Technology, 26, 492-500 (1992). 12.Duan, X., D. Sun, Z. Zhu, X. Chen and P. Shi, “Photocatalytic Decomposition of Toluene by TiO2 film as photocatalysis,” Journal of environmental science and health Part A, Toxic/hazardous substances & environmental engineering, 37, 679-692 (2002). 13.Durme, J. V., J. Dewulf, W. Sysmans, C. Leys and H. V. Langenhove, “Abatement and Degradation Pathways of Toluene in Indoor Air by Positive Corona Discharge,” Chemosphere, 68, 1821–1829 (2007). 14.Eduardo, D. S., P. Boffetta, P. Brennan, H. D. Pellegrini, R. Alvaro and L. P. Gutie’rrez, “Occupational Exposures and Risk of Adenocarcinoma of the Lung,” Uruguay Cancer Causes and Control, 16, 851– 856 (2005). 15.Eero Sjöström, Wood Chemistry, Fundamentals and Applications, 2nd Ed., Gulf Professional Publishers, Oxford, UK. (1993). 16.Fantechi G., L. Vereecken and J. Peeters, “The OH- initiated atmospheric oxidation of pinonaldehyde: Detailed theoretical study and mechanism construction,” Physical Chemistry Chemical Physics, 4, 5795–5805 (2002). 17.Fichan, I., C. Larroche, J. B. Gros, “Water solubility, vapor pressure, and activity coefficients of terpenes and terpenoids,” J. Chem. Eng. Data, 44, 56–62 (1999). 18.Fisk, J. W., “Health and productivity gains from better indoor environments and their relationship with building energy efficiency,” Annual Review of Energy and the Environment, 25, 537-566 (2000). 19.Fox, A. M. and M. T. Dulay, “Heterogeneous Photocatalysis,” Chem. Rev., 93, 341-357 (1993). 20.Fogler, H. S., Elements of chemical reaction engineering, 3rd Ed., Prentice Hall (1999). 21.Fujishima, A. and K. Honda, “Electrochemical Photolysis of Water at a Semiconducter Electrode,” Nature, 238, 37-38 (1972). 22.Griffin, S., S. Grant Willie and J. Markham, “Determination of octanol-water partition coefficient for terpenoids using reversed-phase high performance liquid chromatography,” J. Chromatog. A, 864, 221–228 (1999). 23.Hathaway, G. L., N. H. Proctor, J. P. , Hughes and M. L. Fischman, Proctor and Hughes' chemical hazards of the workplace, 3rd Ed., Van Nostraud Reinhold Publishers, New York (1991). 24.Guo, H., “Source apportionment of volatile organic compounds in Hong Kong homes,” Building and Environment, 46, 11, 2280-2286 (2011). 25.Hines, A. L., K. G. Tushar, K. L. Sudarshan and C. W. Jr. , Richand, “Indoor Air Quality & Control, PTR Prentice Hall Englewood Cliffs,” New Jersey, 5-7 (1993). 26.Holcomb, L. C. and B. S. Seabrook, “Indoor Concentrations of Volatile Organic Compounds: Implications for Comfort, Health and Regulation,” Indoor Environment, 4, 7-26 (1995). 27.Horacio Tovalin-Ahumada, Lawrence Whitehead, “Personal exposures to volatile organic compounds among outdoor and indoor workers in two Mexican cities,” Science of the Total Environment, 376(1–3), 60-71 (2007). 28.Hubbard, H. F., B. K. Coleman, G. Sarwar and R. L. Corsi, “Effects of an ozone-generating air purifier on indoor secondary particles in three residential dwellings,” Indoor Air, 15, 432–444 (2005). 29.Hu, Z. S., J. X. Dong and Chen, G. X., “Preparation of Nanometer Titanium Dioxide with n-Butanol Supercritical Drying,” Power Technology, 101, 205-210 (1999) 30.Ibusuki, T., and K. Takeuchi, “Toluene Oxidation on Uvirradiated Titanium Dioxide With and Without O2, NO2, or H2O at Ambient Temperature,” Atmospheric Environment, 20(9), 1711–1715 (1986). 31.Lehmann, I., A. Thoelke, M. Rehwagen, U. Rolle-Kampczyk, U. Schlink, R. Schulz, M. Borte, U. Diez, O. Herbarth1, “The Influence of Maternal Exposure to Volatile Organic Compounds on the Cytokine Secretion Profile of Neonatal T cells,” Environmental Toxicology, 17(3), 203-210 (2002). 32.Jacoby, W. A., D.M. Blake, J. A. Fennell, J. E. Boulter, and L. M.Vargo, “Heterogeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air,” Journal of the Air & Waste Management Association, 46, 891-898 (1996). 33.Wu, Jeffrey C. S., Hung-Ming Lin, Chao-Ling Lai, “Photo reduction of CO 2 to methanol using optical-fiber photoreactor,” Applied Catalysis A, 296, 194–200 (2005). 34.Jones, A. P., “Indoor Air Quality and Health,” Atmospheric Environment, 33, 4535-4564. (1999). 35.Kim, S. B. and C. H. Sung, “Kinetic Study for Photocatalytic Degradation of Volatile Organic Compounds in Air Using Thin Film TiO2 Photocatalyst,” Applied Catalysis B: Environmental, 35, 305-315 (2002). 36.Ku, Y. , Y. S. Shen and C. M. Ma, “Decomposition of Gaseous Trichloroethylene in a Photoreactor with TiO2- coated Nonwoven Fiber Textile,” Applied Catalysis B: Environmental, 34, 181-190 (2001). 37.Legan, R. W., “Ultraviolet Light Takes on CPI Roles,” Chemical Engineering, January (1982). 38.Lin, C. H., C. S. Li, “Effectiveness of Titanium Dioxide Photocatalyst Filters for Controlling Bioaerosol,” Aerosol Sci. Technol. 37, 162-170 (2003). 39.Li Yu-Teng, Yi-Ting Wu, Haon-Yao Chen, Ming-Hao Hsu, Jeffrey C. S. Wu, Luh-Maan Chang, James Huan, “The efficiency of UV/H2O on photocatalytical oxidation for removing volatile organic compound of clean room in semiconductor fab,” 6th Biennial International Conference on Materials for Advanced Technologies, Singapore, Paper JJ-PO3-2 (2011). 40.Lovreglio P, Carrus A, Iavicoli S, et al., “ Indoor formaldehyde and acetaldehyde levels in the province of Bari, south Italy and estimated health risk,” Journal of Environmental Monitoring, 11 ,955-961 (2009). 41.Matsunaga, T., R. Tomoda, T. Nakajima, H. Wake, “Photo- Electrochemical Sterilization of Microbial Cells by Semiconductor Powders,” FEMS Microbiol. Lett., 29, 211 (1985). 42.Manahan, S. E., Environmental Chemistry, 6th Ed., Lewis Publishers, Boca Raton, (1994). 43.Maira, A. J., K. L. Yeung, J. Soria, J. M. Coeonado, C. Belver, C. Y. Lee and V. Augugliaro, “Gas-Phase Photo- Oxidation of Toluene Using Nanometer-Size TiO2 Catalysts,” Applied Catalysis B: Environmental, 29, 327-336 (2001). 44.Mills, A., R. H. Davis and D. Worsley, “Water Purification by Semiconductor Photocatalysis,” Chem. Soc. Revs, 22, 417-425 (1993). 45.Jaoui, M. and R. M. Kamens, “Gaseous and Particulate Oxidation Products Analysis of a Mixture of α-pinene + β-pinene/O3 /Air in the Absence of Light and α-pinene+ β-pinene/NOx /Air in the Presence of Natural Sunlight,” Journal of Atmospheric Chemistry, 44, 259–297 (2003). 46.Mølhave, L., G. Clausen, B. Berglund, J. Ceaurriz, A. Kettrup, T. Lindvall, M. Maroni, A. C. Pickering, U. Risse, H. Rothweiler, B. Seifert, and M. Younes, “Total Volatile Organic Compounds (TVOC) in Indoor Air Quality Investigations,” Indoor Air, 7, 225-240 (1997). 47.Muggli, D.S., and J. L. Falconer, “Parallel Pathways for Photocatalytic Decomposition of Acetic Acid on TiO2,” J. Catal., 187, 230–237 (1999). 48.Nakamura, I., N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara and K. Takeuchi, “Role of Oxygen Vacancy in the Plasma-Treated TiO2 Photocatalyst with Visible Light Activity for NO Removal,” J. Mol. Catal. A: Chem., 161, 205-212 (2000). 49.Nøjqaard, J. K., K. B. Christensen and P. Wolkoff, “The Effect on Human Eye Blink Frequency of Exposure to Limonene Oxidation Products and Methacrolein,” Toxicology Letters, 156, 241–251 (2005). 50.Norback, D. and K. Nordstorm, “Sick building syndrome in relation to air exchange rate, CO2, room temperature and relative air humidity in university computer classrooms: an experimental study,” International Archives of Occupational and Environmental Health, 82, 21-30 (2008). 51.Obee, T. N. and S. O. Hay, “Effects of Moisture and Temperature on the Photooxidation of Ethylene on Titania,” Environ. Sci. Technol, 31, 2034-2038 (1997). 52.O'Regan, B. and M. Grätzel, “A Low-cost, High- efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films,” Nature, 353, 73-740 (1991). 53.O’Keeffee, A. E., Ortman, G. C., “Primary standard for trace gas analysis,” Analytical Chemistry, 38, 760-763 (1966). 54.Park, J. S. and K. Ikeda, “Database System, AFoDAS/AVODAS, on Indoor Air Organic Compounds in Japan,” Indoor Air, 13(6), 35-41 (2003). 55.Peral, J. and D.F. Ollis, “Heterogeneous Photocatalytic Oxidation of Gas-phase Organics for Air Purification: Acetone, 1-butanol, Butyraldehyde, Formaldehyde and m- xylene Oxidation,” Journal of catalysis, 136, 554-565 (1992). 56.Peeters, J., Vereecken, L., and Fantechi, G., “The Detailed Mechanism of the OH-initiated Atmospheric Oxidation of α-pinene: A Theoretical Study,” Phys. Chem. Chem. Phys., 3, 5489–5504 (2000). 57.Pichat, P., J. Disdier, C. Hoang-Van, D. Mas, G. Goutailler and C. Gaysse, “Purification/Deodorization of Indoor Air and Gaseous Effluents by TiO2 Photocatalysis,” Catalysis Today, 63, 362-369 (2000). 58.Prengle, H. W. and C. E. Mauk, “New technology ozone/UV chemical oxidation wastewater process for metal complex, organic species and disinfection,” AIChE Sym., 74, 228 (1978). 59.Rajeshwar, K., “Photoelectrochemistry and the Environment,” Journal of Applied Electrochemistry, 25, 1067-1082 (1995). 60.Riddick, J. A., W. B. Bunger and T. K. Sakano, Organic Solvents: Physical Properties and Methods of Purification, 4th Ed., J. Wiley & Sons publishers, New York, (1986). 61.Rumchev, K., J. Spickett, M. Bulsara, M. Phillips and S. Stick, “Association of domestic exposure to volatile organic compounds with asthma in young children,” Thorax, 59, 746-751 (2004). 62.Rufus, D. E., S. Christian, L. Vito, L. K. Hak , J. Matti, O. B. Lucy and K. Nino, “Time–activity relationships to VOC personal exposure factors,” Atmospheric Environment, 40, 29, 5685–5700 (2006). 63.Rufus, D. E., J. Jurvelin, K. Saarelad and M. Jantunen, “VOC concentrations measured in personal samples and residential indoor, outdoor and workplace microenvironments in EXPOLIS-Helsinki, Finland,” Atmospheric Environment, 35(27), 4531-4738 (2001). 64.Saito, T., T. Iwase, J. Horie and T. Morioka, “Mode of Photocatalytic Bactericidal Action of Powdered Semiconductor TiO2 on Streptococci Mutants,” Journal of Photochemical Photobiology, 14, 369–379 (1992). 65.Sarwar, G., D. Olson, R. Corsi and C. Weschler, “Indoor Fine particles: The Role of Terpene Emissions from Consumer Products,” Journal of Air and Waste Management Association 54, 367-377 (2004). 66.Seifert, B. and H. J. Abraham, “Indoor Air Concentrations of Benzene and Some Other Aromatic Hydrocarbons,” Ecotoxicology and Environmental Safety, 6 (2), 190-192 (1982). 67.Shang, J., Y. Du, Z. Xu, “Photocatalytic Oxidation of Heptane in the Gas-Phase over TiO2,” Chemosphere, 46, 93-99 (2002). 68.USEPA, The EPA cost of illness handbook, Washington, D.C.: U.S. Environmental Protection Agency (2007). 69.USEPA. 40 CFR 51.100(s), 57 FR 3941 (1992). 70.Weast, R., Handbook of Chemistry and Physics, 53rd Ed., CRC Press, Cleveland (1972–73). 71.Weast, R., Handbook of Chemistry and Physics, 64th Ed., CRC Press, Boca Raton, Florida (1983–84). 72.Weschler, C. J., “New Directions: Ozone-Initiated Reaction Products Indoors May Be More Harmful Than Ozone Itself,” New Directions / Atmospheric Environment, 38, 5715–5716 (2004). 73.Weschler, C. J., A. T. Hodgson and J. D. Wooley, “Indoor Chemistry: Ozone, Volatile Organic Compounds and Carpets,” Environmental Science & Technology, 26, 2371- 2377 (1992). 74.World Health Organization, “Indoor Air Quality: Organic Pollutants. Copenhagen, WHO Regional Office for Europe,” EURO Reports and Studies No. 111 (1989). 75.Wolkoff, P. A., C. K. Clause, Wilkins and G. D. Nielsen, “Formation of strong airway irritants in terpenes/ozone mixtures,” Indoor Air, 10, 82-91 (2000). 76.World Health Organization, “Air Quality Guidelines - Second Edition,” WHO Regional Office for Europe, Copenhagen, Denmark, Chapter 5.15 (2000). 77.Yu, Y. H., Y. T. Pan, Y. T. Wu, L. Janusz and Jeffrey C. S. Wu, “ Photocatalytic NO reduction with C3H8 using a monolith photoreactor,” Catalysis Today, 174, 141-147 (2011). 78.Zhang, H. Z., Y. Q. Li, J. R. Xia, P. Davidovits, L. R. Williams, J. T. Jayne, C.E. Kolb and D.R. Worsnop, “Uptake of gas-phase species by 1-octanol. 1. Uptake of α -pinene, γ -terpinene, p-cymene, and 2-methyl-2- hexanol as a function of relative humidity and temperature,” J. Phys. Chem. A, 107(33), 6388–6397 (2003). 79.Zhao, J. and X. Yang, “Photocatalytic Oxidation for Indoor Air Purification: a Literature Review,” Building and Environment, 38, 645 – 654 (2003). 80.行政院環境保護署,“宣導手冊-認識生活環境中毒性物質”,行 政院環境保護署,2011。 81.行政院環保署,“室內空氣品質管理法-中華民國100年11月23日 總說明”,行政院環境保護署,2011。 82.林巧燕,“熱脫附氣相層析儀對於高科技產業及室內空氣中半揮 發性有機化合物之分析應用”,國立清華大學原子科學系,碩士 論文,2006。 83.江柏毅,“多層結構奈米二氧化鈦電極/染料敏化太陽能電池的穩 定性與效率”,元智大學化學工程系,碩士論文,2004。 84.巫玉娟,“活性碳纖維塗覆二氧化鈦光觸媒去除揮發性有機物之 可行性研究”,國立中山大學環境工程學研究所,碩士論文, 2005。 85.藤嶋昭,橋本和仁與渡部俊也,“光觸媒之奧秘”,日本實業出 版社,2000。 86.呂宗昕,“圖解奈米科技與光觸媒”,商周出版,2003。 87.賴明俊,“以紫外光/臭氧程序增進光觸媒對室內生物源揮發性有 機物三氯乙烯去除效率之研究”,國立臺灣大學環境工程學研究 所,碩士論文,2009。 88.台灣總督府中央研究院,“台灣產植物精油聚報”,台灣總督府 中央研究院 ,1934。 89.邱煌升,“台灣二葉松松針精油抗菌性之研究”,國立台灣大學 碩士論文,2003。 90.趙崇仁,“薰香精油對室內空氣品質的影響” ,國立成功大學環 境醫學研究所碩士論文,2004。 91.尹華文,“玫瑰桉葉部精油成份與材部製漿性質之研究”,國立 台灣大學森林研究所碩士論文,1988。 92.謝瑞忠,玫瑰桉葉精油含量及化學成份研究。林業試驗所研究報 告季刊,10(1):75-82 ,1995。 93.吳佩芝,“室內空氣品質標準檢討及自主管理診斷機制建立與推 動”,社團法人台灣室內環境品質學會,EPA-98-FA11-03-D151, 2009。 94.余國賓,“以紫外光/臭氧程序增進光觸媒對室內揮發性有機物去 除效率之研究”,國立台灣大學博士論文,2006。 95.黃國豪,“以紫外光/臭氧程序增進光觸媒對室內生物源揮發性有 機物去除效率之研究”,國立臺灣大學環境工程學研究所,碩士 論文,2008。 96.賴靈焜,“氣候異變下控制室內環境中臭氧與建材二次污染物關 鍵因子之研究”,國立成功大學建築學系研究所,碩士論文, 2008。 97.林敦慧,“應用艙室技術於建材排放特性及其室內空氣污染化學 作用之研究”,國立高雄第一科技大學環境安全衛生研究所,碩 士論文,2004。 98.劉僑育,“室內不同燈源對於Terpenes 化合物與臭氧反應生成二 次有機氣膠影響之研究”, 國立高雄第一科技大學環境安全衛生 研究所碩士論文,碩士論文,2007。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63987 | - |
dc.description.abstract | 本實驗將以光觸媒控制處理α-pinene。將嘗試以光觸媒披覆於蜂巢狀載體,藉由蜂巢狀載體增加反應面積,達到充分利用空間之目的,並且搭配光纖作為導光通道。實驗之光觸媒選用Degussa P25 TiO2商用化光觸媒,而紫外光燈管為8W,波長為254nm。實驗之影響因子包含α-pinene進流濃度、濕度、氣體流量,進行二重複實驗,取其平均值討論。
由實驗得知,氣體流量大於1,500ml/min時,可忽略氣相質傳效應,此時光催化反應速率決定步驟為觸媒表面反應所控制。因此將氣體流量控制1500ml/min下進行實驗,在進流濃度400ppb~2400ppb時,光觸媒轉化率不論在何種相對濕度下(30%、50%、70%),皆能維持在90%~95%。而光觸媒反應速率皆隨進流濃度增加呈上升趨勢,然而在相對濕度50%時,光觸媒反應速率皆大於相對濕度30%及70%,因此適當的相對濕度(50%)有助於提升光觸媒反應速率。在相對濕度70%時,光觸媒轉化率與中間產物殘餘量隨進流濃度呈現下降的趨勢。光觸媒反應動力模式以雙分子競爭模式(Langmuir-Hinshelwood model)模擬,可得在相對濕度30%下,α-pinene與水分子之Langmuir吸附常數為0.17與0.01 ppm-1,α-pinene之反應速率常數為0.82 μmole/m2-s; 相對濕度50%下,α-pinene與水分子之Langmuir吸附常數為0.56與5.4×10-3 ppm-1,α-pinene之反應速率常數為0.24 μmole/m2-s; 相對濕度70%下,α-pinene與水分子之Langmuir吸附常數為1.74與9.6×10-3 ppm-1,α-pinene之反應速率常數為0.18 μmole/m2-s。 由於濕度對光觸媒催化反應具有生成氫氧自由基及與反應物產生競爭吸附之效果,由實驗而得,相對濕度的增加可降低約8%的中間產物產生,然而對光觸媒轉化率的影響較不明顯,因此濕度在本實驗中是具有增進氫氧自由基生成之正面效應。 | zh_TW |
dc.description.abstract | Photocatalytic oxidation (PCO) was used to control α-pinene in indoor environment in this research. Effecient use the space for the photocatalystreaction with indoor VOCs is important. The objective of coating the photocatalyst on honeycomb support is to make the best of space by addition the area of reaction. The honeycomb support needs to be operated with optical fiber for UV light. In the experiment, Degussa P25 TiO2 was chosen as catalyst. The UV lamp is 254nm and 8W. The key factors including α-pinene concentration, relative humidity, gas flow rate and the experiment conducted twice for average.
In the experiment, the effect of gas-phase transfer could be negligible when gas flow rate exceeded 1500ml/min. Therefore the rate-determaining step was related with the surface reaction of catalyst for photocatalysis. The gas flow rate is fixed at 1500ml/min to conduct the following experiment. The inlet concentration was from 400ppb to 2400ppb, the conversion of photocatalyst was maintained between 90% to 95% regardless of the relative humidity which is from 30% to 70%. PCO rate is increased with the inlet concentration. PCO rate at the relative humidity 50% is more than it at the relative humidity 30% and 70%. Therefore, the moderate relative humidity (50%) is helpful to PCO rate, others were not. At the relative humidity 70%, the conversion of photocatalyst and the residual intermediate were decrease with the inlet concentration. To fit the reaction rate of photocatalyst, it is to use the Langmuir-Hinshelwood model for bimolecular competitive adsorption form. The Langmuir adsorption constants of α-pinene and water at relative humidity 30% is 0.168 and 1×10-2 ppm-1. And the reaction rate constants of α-pinene at relative humidity 30% is 0.82 μmole/m2-s; The Langmuir adsorption constants of α-pinene and water at relative humidity 50% is 0.56 and 5.4×10-3 ppm-1. And the reaction rate constants of α-pinene at relative humidity 50% is 0.24 μmole/m2-s; The Langmuir adsorption constants of α-pinene and water at relative humidity 70% is 1.74 and 9.6×10-3 ppm-1. And the reaction rate constants of α-pinene at relative humidity 70% is 0.18 μmole/m2-s. Relative humidity may affect the production of hydroxyl radicals and the competitive adsorption in photocatalytic reaction. Results indicated that the increase of relative humidity could decrease the intermediates by about 8%. However, the increase of relative humidity had slightly effect on the conversion of photocatalyst. Consequently, relative humidity had an enhancement effect on production of the hydroxyl radicals in the experiment. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:25:25Z (GMT). No. of bitstreams: 1 ntu-101-R99541121-1.pdf: 2702204 bytes, checksum: 0bb3f9d6c6ac32b85c9c0f841d30beea (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 摘要 i
Abstract ii 總目錄 iv 圖目錄 vi 表目錄 viii 符號說明 ix 第一章 緒論 1 1.1研究背景 1 1.2研究目的 4 1.3研究方法與內容 4 1.4研究流程 5 第二章 文獻回顧 6 2.1 揮發性有機物之定義與種類 6 2.2室內常見揮發性有機物之來源與物種 7 2.3室內揮發性有機物對人體健康之影響 10 2.4室內生物源揮發性有機物 12 2.5光觸媒催化反應 23 2-5-1 光觸媒概述 23 2-5-2 光觸媒催化反應之原理 24 2-5-3 TiO2的晶相及光觸媒製備方法 28 2-5-4 光觸媒TiO2之應用 30 2.6 光觸媒(TiO2)去除VOCs之相關研究 32 2-6-1 光催化反應之影響因子 32 2-6-2 光催化反應之動力模式 37 第三章 實驗設備與方法 41 3.1實驗材料及儀器設備 41 3-1-1實驗材料 41 3-1-2儀器設備 42 3.2實驗系統 43 3-2-1實驗系統 43 3-2-2 空氣供應系統 46 3-2-3 揮發性氣體產生系統 46 3.2-4 揮發性氣體採樣及分析系統 49 3-2-5 光觸媒光反應系統 53 3.3實驗變因及CO與CO2濃度分析 56 3.4實驗程序 57 第四章 結果與討論 60 4.1 α-pinene濃度對光觸媒反應之影響 60 4.2 氣體流量對光觸媒反應之影響 70 4.3 濕度對光觸媒反應之影響 72 4.4 光觸媒催化處理α-pinene與相似物種之比較 78 第五章 結論與建議 80 5.1結論 80 5.2建議 82 參考文獻 83 附錄 94 | |
dc.language.iso | zh-TW | |
dc.title | 以蜂巢狀光觸媒載體處理室內生物源揮發性有機物之研究 | zh_TW |
dc.title | Control of Indoor Biogenic Volatile Organic Compounds with the Honeycomb Monolith Supported Photocatalyst | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李家偉,余國賓,吳致呈 | |
dc.subject.keyword | α-pinene,光觸媒,光纖,生物源揮發性有機物,蜂巢狀載體, | zh_TW |
dc.subject.keyword | photocatalyst,optical fiber,biogenic volatile organic compounds,α-pinene,honeycomb monolith, | en |
dc.relation.page | 97 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-16 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 2.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。