Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 病理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63975
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張逸良(Yih-Leong Chang)
dc.contributor.authorKai-Hsiang Chuangen
dc.contributor.author莊凱翔zh_TW
dc.date.accessioned2021-06-16T17:24:59Z-
dc.date.available2012-09-18
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citation1 Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin 2011; 61:69-90
2 Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med 2008; 359:1367-1380
3 Cheng L, Alexander RE, Maclennan GT, et al. Molecular pathology of lung cancer: key to personalized medicine. Mod Pathol 2012; 25:347-369
4 Sun S, Schiller JH, Gazdar AF. Lung cancer in never smokers--a different disease. Nat Rev Cancer 2007; 7:778-790
5 Spira A, Beane J, Shah V, et al. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci U S A 2004; 101:10143-10148
6 Mao L, Lee JS, Kurie JM, et al. Clonal genetic alterations in the lungs of current and former smokers. J Natl Cancer Inst 1997; 89:857-862
7 WistubaII, Berry J, Behrens C, et al. Molecular changes in the bronchial epithelium of patients with small cell lung cancer. Clin Cancer Res 2000; 6:2604-2610
8 Sato M, Shames DS, Gazdar AF, et al. A translational view of the molecular pathogenesis of lung cancer. J Thorac Oncol 2007; 2:327-343
9 Travis WD, Travis LB, Devesa SS. Lung cancer. Cancer 1995; 75:191-202
10 Worden FP, Kalemkerian GP. Therapeutic advances in small cell lung cancer. Expert Opin Investig Drugs 2000; 9:565-579
11 Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 2006; 12:895-904
12 Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002; 2:563-572
13 Gupta GP, Massague J. Cancer metastasis: building a framework. Cell 2006; 127:679-695
14 Chiang AC, Massague J. Molecular basis of metastasis. N Engl J Med 2008; 359:2814-2823
15 Pan SH, Chao YC, Hung PF, et al. The ability of LCRMP-1 to promote cancer invasion by enhancing filopodia formation is antagonized by CRMP-1. J Clin Invest 2011; 121:3189-3205
16 Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139:871-890
17 Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7:131-142
18 Shih JY, Yang PC. The EMT regulator slug and lung carcinogenesis. Carcinogenesis 2011; 32:1299-1304
19 Harney AS, Meade TJ, LaBonne C. Targeted inactivation of Snail family EMT regulatory factors by a Co(III)-Ebox conjugate. PLoS One 2012; 7:e32318
20 Hay ED. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 2005; 233:706-720
21 Lee JM, Dedhar S, Kalluri R, et al. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 2006; 172:973-981
22 Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2:442-454
23 Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 2001; 23:912-923
24 Wang WL, Hong TM, Chang YL, et al. Phosphorylation of LCRMP-1 by GSK3beta promotes filopoda formation, migration and invasion abilities in lung cancer cells. PLoS One 2012; 7:e31689
25 Alahari SK, Lee JW, Juliano RL. Nischarin, a novel protein that interacts with the integrin alpha5 subunit and inhibits cell migration. J Cell Biol 2000; 151:1141-1154
26 Jenndahl LE, Isakson P, Baeckstrom D. c-erbB2-induced epithelial-mesenchymal transition in mammary epithelial cells is suppressed by cell-cell contact and initiated prior to E-cadherin downregulation. Int J Oncol 2005; 27:439-448
27 Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 2005; 24:5764-5774
28 Wang SP, Wang WL, Chang YL, et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 2009; 11:694-704
29 Mareel M, Leroy A. Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev 2003; 83:337-376
30 Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 2004; 4:118-132
31 Perez-Mancera PA, Gonzalez-Herrero I, Perez-Caro M, et al. SLUG in cancer development. Oncogene 2005; 24:3073-3082
32 Handschuh G, Candidus S, Luber B, et al. Tumour-associated E-cadherin mutations alter cellular morphology, decrease cellular adhesion and increase cellular motility. Oncogene 1999; 18:4301-4312
33 Lee YC, Wu CT, Chen CS, et al. E-cadherin expression in surgically-resected non-small cell lung cancers--a clinicopathological study. Thorac Cardiovasc Surg 2000; 48:294-299
34 Bremnes RM, Veve R, Gabrielson E, et al. High-throughput tissue microarray analysis used to evaluate biology and prognostic significance of the E-cadherin pathway in non-small-cell lung cancer. J Clin Oncol 2002; 20:2417-2428
35 Perl AK, Wilgenbus P, Dahl U, et al. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 1998; 392:190-193
36 Hennig G, Behrens J, Truss M, et al. Progression of carcinoma cells is associated with alterations in chromatin structure and factor binding at the E-cadherin promoter in vivo. Oncogene 1995; 11:475-484
37 Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 2002; 62:1613-1618
38 Rodrigo I, Cato AC, Cano A. Regulation of E-cadherin gene expression during tumor progression: the role of a new Ets-binding site and the E-pal element. Exp Cell Res 1999; 248:358-371
39 de Herreros AG, Peiro S, Nassour M, et al. Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. J Mammary Gland Biol Neoplasia 2010; 15:135-147
40 Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007; 7:415-428
41 Bolos V, Peinado H, Perez-Moreno MA, et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 2003; 116:499-511
42 Martinez-Estrada OM, Culleres A, Soriano FX, et al. The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. Biochem J 2006; 394:449-457
43 Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 2002; 3:155-166
44 Sou PW, Delic NC, Halliday GM, et al. Snail transcription factors in keratinocytes: Enough to make your skin crawl. Int J Biochem Cell Biol 2010; 42:1940-1944
45 Shih JY, Tsai MF, Chang TH, et al. Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clin Cancer Res 2005; 11:8070-8078
46 Kurrey NK, K A, Bapat SA. Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol 2005; 97:155-165
47 Uchikado Y, Natsugoe S, Okumura H, et al. Slug Expression in the E-cadherin preserved tumors is related to prognosis in patients with esophageal squamous cell carcinoma. Clin Cancer Res 2005; 11:1174-1180
48 Castro Alves C, Rosivatz E, Schott C, et al. Slug is overexpressed in gastric carcinomas and may act synergistically with SIP1 and Snail in the down-regulation of E-cadherin. J Pathol 2007; 211:507-515
49 da Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung cancer. Annu Rev Pathol 2011; 6:49-69
50 Salomon DS, Brandt R, Ciardiello F, et al. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995; 19:183-232
51 Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 2006; 7:505-516
52 Pao W, Iafrate AJ, Su Z. Genetically informed lung cancer medicine. J Pathol 2011; 223:230-240
53 Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005; 5:341-354
54 Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med 2008; 358:1160-1174
55 Wu JY, Wu SG, Yang CH, et al. Lung cancer with epidermal growth factor receptor exon 20 mutations is associated with poor gefitinib treatment response. Clin Cancer Res 2008; 14:4877-4882
56 Sakuma Y, Matsukuma S, Yoshihara M, et al. Distinctive evaluation of nonmucinous and mucinous subtypes of bronchioloalveolar carcinomas in EGFR and K-ras gene-mutation analyses for Japanese lung adenocarcinomas: confirmation of the correlations with histologic subtypes and gene mutations. Am J Clin Pathol 2007; 128:100-108
57 Sequist LV, Bell DW, Lynch TJ, et al. Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J Clin Oncol 2007; 25:587-595
58 Sharma SV, Bell DW, Settleman J, et al. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007; 7:169-181
59 Wheeler DL, Dunn EF, Harari PM. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol 2010; 7:493-507
60 Eley GD, Reiter JL, Pandita A, et al. A chromosomal region 7p11.2 transcript map: its development and application to the study of EGFR amplicons in glioblastoma. Neuro Oncol 2002; 4:86-94
61 Park S, James CD. ECop (EGFR-coamplified and overexpressed protein), a novel protein, regulates NF-kappaB transcriptional activity and associated apoptotic response in an IkappaBalpha-dependent manner. Oncogene 2005; 24:2495-2502
62 Baras A, Yu Y, Filtz M, et al. Combined genomic and gene expression microarray profiling identifies ECOP as an upregulated gene in squamous cell carcinomas independent of DNA amplification. Oncogene 2009; 28:2919-2924
63 Baras A, Moskaluk CA. Intracellular localization of GASP/ECOP/VOPP1. J Mol Histol 2010; 41:153-164
64 Baras AS, Solomon A, Davidson R, et al. Loss of VOPP1 overexpression in squamous carcinoma cells induces apoptosis through oxidative cellular injury. Lab Invest 2011; 91:1170-1180
65 Kendall J, Liu Q, Bakleh A, et al. Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proc Natl Acad Sci U S A 2007; 104:16663-16668
66 Vogt N, Gibaud A, Almeida A, et al. Relationships linking amplification level to gene over-expression in gliomas. PLoS One 2010; 5:e14249
67 Yuan S, Yu SL, Chen HY, et al. Clustered genomic alterations in chromosome 7p dictate outcomes and targeted treatment responses of lung adenocarcinoma with EGFR-activating mutations. J Clin Oncol 2011; 29:3435-3442
68 Chu YW, Yang PC, Yang SC, et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 1997; 17:353-360
69 Chang TH, Tsai MF, Su KY, et al. Slug confers resistance to the epidermal growth factor receptor tyrosine kinase inhibitor. Am J Respir Crit Care Med 2011; 183:1071-1079
70 Chao YC, Pan SH, Yang SC, et al. Claudin-1 is a metastasis suppressor and correlates with clinical outcome in lung adenocarcinoma. Am J Respir Crit Care Med 2009; 179:123-133
71 Lin JC, Yang SC, Hong TM, et al. Phenanthrene-based tylophorine-1 (PBT-1) inhibits lung cancer cell growth through the Akt and NF-kappaB pathways. J Med Chem 2009; 52:1903-1911
72 Slebos RJ, Livanos E, Yim HW, et al. Chromosomal abnormalities in bronchial epithelium from smokers, nonsmokers, and lung cancer patients. Cancer Genet Cytogenet 2005; 159:137-142
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63975-
dc.description.abstract肺癌是致死率相當高的一種癌症。由於近幾年研究人員發現EGFR的突變可能和肺癌的形成有關,尤其是在亞州地區,是以有一系列針對EGFR相關的研究不斷的被加以報導;其中科學家發現當位於第七號染色體上的EGFR基因拷貝數目擴增時,常伴隨著有VOPP1(vesicular, overexpressed in cancer, prosurvival protein 1)基因的共同擴增現象產生。儘管目前已知VOPP1是一個具有促進細胞存活(pro-survival)能力的基因,但其在癌化過程中所扮演的角色與其和EGFR訊號因子間的關聯性仍不十分清楚。在本篇論文中,我們首先利用實驗室所建立的兩組細胞株模組CL1-5 / CL1-0(具有不同癌侵襲能力)以及PC9 / PC9 IR(對於標靶藥物Iressa不同反應性),建立VOPP1 overexpression 與knock down的穩定表現細胞;進一步,利用這些細胞進行一系列的功能性檢測,藉以瞭解VOPP1對於細胞移動能力、細胞凋亡,細胞增生及其對標把藥物治療之反應之影響。實驗結果顯示,當細胞大量表現VOPP1蛋白質時,可能藉由調控鈣黏著素E的表現進而抑制細胞的移動能力。不僅如此,我們的結果也發現,抑制VOPP1可以使對於標靶藥物Irresa具有抗藥性之PC9IR細胞株回復對Iressa的敏感度;同時我們也發現大量表現VOPP1時,對癌細胞生長速率並不會有太大的變化,但抑制VOPP1的表現量則會使得癌細胞生長速率減緩。綜合以上的研究結果,我們可以了解VOPP1在抑制癌轉移及標靶藥物抗藥性的治療上均扮演著極為重要的角色;未來若能針對其相關作用機轉作進一步的研究將有助於肺癌病患的治療。zh_TW
dc.description.abstractLung cancer is the leading cause of cancer-related mortality in the world. Recently, scientists find that EGFR mutation may correlate with lung cancer occurrence especially in Asia. For this reason, more and more references about EGFR and its signaling regulation have been reported. One of them is the finding about co-amplification of EGFR and VOPP1(vesicular, overexpressed in cancer, prosurvival protein 1)on chromosome 7. Until now, we only understand that VOPP1 can promote cell survival but the detail mechanism of VOPP1 in cancer progression and its cross-talk associated with EGFR signaling are still unclear. In this study, we first established VOPP1 overexpression and knock down stable cells in CL1-5/ CL1-0 and PC9/ PC9IR cell models. Then, we used these cell lines to explore the functional role of VOPP1 in cancer cell migration, apoptosis, cell proliferation and sensitivity of target therapy. Our results showed that VOPP1 could inhibit cell migration through up regulate the expression of E-cadherin. Not only this effect, we also observed that knock down the expression of VOPP1 in PC9IR cells can increase the sensitivity of Irresa. In cell proliferation, we also found that overexpression VOPP1 could not affect cell proliferation rate in all our experimental cells, but knock down the expression of VOPP1 in CL1-5 and PC9IR cells may attenuate cell proliferation in both cells. Collectively, we understand that VOPP1 play an important role in suppression of cancer metastasis and resistance of target therapy. It should be helpful for lung cancer treatment to clarify the detail mechanism of how VOPP1 involved in cell migration and drug resistance in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:24:59Z (GMT). No. of bitstreams: 1
ntu-101-R99444005-1.pdf: 1271340 bytes, checksum: c1a0d38078d4249854d62bb5bd80caf8 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 2
Abstract 3
目錄 4
第一章 前言 8
1 肺癌 8
1.1 癌轉移 8
1.2 上皮生長因子接受器 11
2 VOPP1 14
2.1 VOPP1於細胞內位置 15
2.2 VOPP1透過NF-κB促進細胞存活 16
2.3 VOPP1與EGFR關係 16
3 實驗目標: 18
第二章 材料方法 19
1 細胞培養 19
2 VOPP1 表現質體的建構 19
3 VOPP1 相關病毒製備及穩定表現細胞的建立 20
4 核醣核酸萃取 20
5 逆轉錄酶鏈式反應 21
6 即時定量逆轉錄酶鏈式反應 21
7 西方免疫轉漬法 22
8 傷口癒合試驗 22
9 細胞侵襲能力試驗 23
10 單細胞定位追蹤 23
11 抗體 24
12 細胞增生試驗 24
13 細胞存活度試驗 24
第三章 結果 26
1 大量表現VOPP1於高癌侵襲能力的細胞株CL1-5降低細胞爬行能力(migration ability) 26
2 利用單細胞追蹤試驗來檢測VOPP1對於細胞爬行能力的影響 27
3 大量表現VOPP1於細胞株CL1-5誘使鈣黏著素E (E-cadherin)表現量上升 27
4 在肺腺癌細胞株CL141中大量表現VOPP1使得細胞爬行能力下降以及E-cadherin表現量上升 29
5 抑制內生性VOPP1表現量於細胞株CL1-0 降低E-cadherin表現量,並引起細胞型態改變 30
6 大量表現VOPP1似乎對於CL1-5的癌侵襲能力不造成影響 31
7 VOPP1對於細胞生長速率的影響 31
8 VOPP1在EGFR活化突變的細胞株中表現量較多 32
9 抑制內生性VOPP1表現量提升細胞株PC9 IR對標靶藥物Iressa的反應 33
10 大量表現VOPP1於Iressa敏感細胞株PC9似乎沒有顯著增加藥物耐受性 34
第四章 討論 35
第五章 圖表及列表 38
Figure 1. 在具有癌高侵襲能力的肺癌細胞株CL1-5 中大量表現VOPP1可以降低細胞爬行能力 39
Figure 2. 利用單細胞追蹤試驗來分析細胞爬行能力 41
Figure 3. 在高癌侵襲能力的肺癌細胞株CL1-5 中大量表現VOPP1誘使 E-cadherin mRNA表現量上升 42
Figure 4. 在高癌侵襲能力的肺癌細胞株CL1-5 中大量表現VOPP1誘使E-cadherin 蛋白表現量上升 43
Figure 5. 在具有癌高侵襲能力的肺癌細胞株CL141 中大量表現VOPP1細胞爬行能力下降,提高E-cadherin表現量 45
Figure 6. 抑制內生性VOPP1的細胞株CL1-0 使得E-cadherin表現量下降,細胞型態傾向上皮-間質轉化 46
Figure 7. 大量表現 VOPP1肺癌細胞株CL1-5 中似乎對於癌侵襲能力沒有顯著影響 48
Figure 8. VOPP1對於細胞增生造成的影響 49
Figure 9. 肺癌細胞株內生性VOPP1訊息核醣核酸表現量 50
Figure 10. 肺癌細胞株內生性VOPP1蛋白表現量 51
Figure 11. 在對標靶藥物Iressa有抗性的細胞株PC9 IR中抑制內生性 VOPP1可提高細胞對於藥物的反應 52
Figure 12. 在對標靶藥物敏感的細胞株PC9中大量表現VOPP1似乎不會增加細胞對藥物的抗性 53
Table 1. 細胞株整理 54
Table 2 . VOPP1 表現質體的建構使用核酸引子 55
Table 3 . 逆轉錄酶鏈式反應使用引子 56
第六章 參考文獻 57
dc.language.isozh-TW
dc.subject肺癌zh_TW
dc.subject癌轉移zh_TW
dc.subjectIressazh_TW
dc.subjectEGFRzh_TW
dc.subjectVOPP1zh_TW
dc.subjectlung canceren
dc.subjectIressaen
dc.subjectEGFRen
dc.subjectVOPP1en
dc.subjectmetastasisen
dc.titleVOPP1在肺腺癌中透過提高E-cadherin表現量進而抑制細胞移動能力zh_TW
dc.titleVOPP1 Inhibits Cell Migration Through Up-regulatory E-cadherin in Lung Adenocarcinomaen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor楊泮池(Pan-Chyr Yang)
dc.contributor.oralexamcommittee陳惠文(Huei-Wen Chen)
dc.subject.keyword肺癌,癌轉移,Iressa,EGFR,VOPP1,zh_TW
dc.subject.keywordlung cancer,metastasis,Iressa,EGFR,VOPP1,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept病理學研究所zh_TW
顯示於系所單位:病理學科所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved