Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63944
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor譚婉玉(Woan-Yuh Tarn)
dc.contributor.authorJhe-Rong Wuen
dc.contributor.author吳哲榕zh_TW
dc.date.accessioned2021-06-16T17:23:56Z-
dc.date.available2017-09-18
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citation1. A. Matlin, F. Clark, C. Smith, Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Bio. 6, 386 (2005).
2. B. Modrek, C. Lee, A genomic view of alternative splicing. Nat Rev Genet. 30, 13 (2002).
3. M. Jurica, M. Moore, Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell 12, 5 (2003).
4. E. Lander et al., Initial sequencing and analysis of the human genome. Nature 409, 860 (2001).
5. N. Faustino, T. Cooper, Pre-mRNA splicing and human disease. Genes Dev. 17, 419 (2003).
6. K. Lukong, K.-w. Chang, E. Khandjian, S. Richard, RNA-binding proteins in human genetic disease. Trends Genet. 24, 416 (2008).
7. G.-S. Wang, T. Cooper, Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet. 8, 749 (2007).
8. A. Mankodi et al., Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289, 1769 (2000).
9. G. Tiscornia, M. Mahadevan, Myotonic dystrophy: the role of the CUG triplet repeats in splicing of a novel DMPK exon and altered cytoplasmic DMPK mRNA isoform ratios. Mol. Cell 5, 959 (2000).
10. A. Mankodi, C. Thornton, Myotonic syndromes. Curr. Opin. Neurol. 15, 545 (2002).
11. X. Lin et al., Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum. Mol. Genet. 15, 2087 (2006).
12. E. Wang et al., Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470 (2008).
13. V. Markovtsov et al., Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol. Cell. Biol. 20, 7463 (2000).
14. K. Sawicka, M. Bushell, K. Spriggs, A. Willis, Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem. Soc. T. 36, 641 (2008).
15. N. Keppetipola, S. Sharma, Q. Li, D. Black, Neuronal regulation of pre-mRNA splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2. Crit. Rev. Biochem. Mol 47, 360 (2012).
16. A. Ghetti, S. Pinol-Roma, W. Michael, C. Morandi, G. Dreyfuss, hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res. 20, 3671 (1992).
17. E. Wagner, R. Carstens, M. Garcia-Blanco, A novel isoform ratio switch of the polypyrimidine tract binding protein. Electrophoresis 20, 1082 (1999).
18. M. Wollerton, C. Gooding, E. Wagner, M. Garcia-Blanco, C. Smith, Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol. Cell 13, 91 (2004).
19. M. Markus, B. Morris, RBM4: a multifunctional RNA-binding protein. Int. J. Biochem Cell B. 41, 740 (2009).
20. J.-C. Lin, W.-Y. Tarn, RBM4 down-regulates PTB and antagonizes its activity in muscle cell-specific alternative splicing. J. Cell Biol. 193, 509 (2011).
21. J. C. Lin, W. Y. Tarn, Exon selection in alpha-tropomyosin mRNA is regulated by the antagonistic action of RBM4 and PTB. Mol. Cell. Biol. 25, 10111 (Nov, 2005).
22. M. Markus et al., WT1 interacts with the splicing protein RBM4 and regulates its ability to modulate alternative splicing in vivo. Exp. Cell Res. 312, 3379 (2006).
23. S. Kojima et al., LARK activates posttranscriptional expression of an essential mammalian clock protein, PERIOD1. P Natl. Acad Sci. USA 104, 1859 (2007).
24. J.-C. Lin, M. Hsu, W.-Y. Tarn, Cell stress modulates the function of splicing regulatory protein RBM4 in translation control. P Natl. Acad Sci. USA 104, 2235 (2007).
25. J.-C. Lin, W.-Y. Tarn, RNA-binding motif protein 4 translocates to cytoplasmic granules and suppresses translation via argonaute2 during muscle cell differentiation. J. Biol. Chem. 284, 34658 (2009).
26. J. Hock et al., Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep. 8, 1052 (2007).
27. M.-C. Lai, H.-W. Kuo, W.-C. Chang, W.-Y. Tarn, A novel splicing regulator shares a nuclear import pathway with SR proteins. EMBO J. 22, 1359 (2003).
28. L. Brown, S. Brown, Alanine tracts: the expanding story of human illness and trinucleotide repeats. Trends Genet. 20, 51 (2004).
29. A. Calado et al., Nuclear inclusions in oculopharyngeal muscular dystrophy consist of poly(A) binding protein 2 aggregates which sequester poly(A) RNA. Hum. Mol. Genet. 9, 2321 (2000).
30. B. van der Sluijs, B. van Engelen, L. Hoefsloot, Oculopharyngeal muscular dystrophy (OPMD) due to a small duplication in the PABPN1 gene. Hum. Mutat. 21, 553 (2003).
31. Y. Brooks et al., Functional pre- mRNA trans-splicing of coactivator CoAA and corepressor RBM4 during stem/progenitor cell differentiation. J. Biol. Chem. 284, 18033 (2009).
32. J. G. P. Or Gozani, and Robin Reed A novel set of spliceosome-associated proteins and the essential splicing factor PSF bind stably to pre-mRNA prior to catalytic step 11 of the splicing reaction. EMBO J. vol. 13, 3356 (1994).
33. K. Anderson, Bimolecular Exon Ligation by the Human Spliceosome. Science 276, 1712 (1997).
34. D. Auboeuf et al., CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing. Mol. Cell. Biol. 24, 442 (2004).
35. A. Kar, N. Havlioglu, W.-Y. Tarn, J. Wu, RBM4 interacts with an intronic element and stimulates tau exon 10 inclusion. J. Biol. Chem. 281, 24479 (2006).
36. C. Stephens, E. Harlow, Differential splicing yields novel adenovirus 5 E1A mRNAs that encode 30 kd and 35 kd proteins. EMBO J. 6, 2027 (1987).
37. J. Epstein et al., Two independent and interactive DNA-binding subdomains of the Pax6 paired domain are regulated by alternative splicing. Genes Dev. 8, 2022 (1994).
38. Z. Zhang, G. Carmichael, The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 106, 465 (2001).
39. A. Fox, C. Bond, A. Lamond, P54nrb forms a heterodimer with PSP1 that localizes to paraspeckles in an RNA-dependent manner. Mol. Biol. Cell 16, 5304 (2005).
40. J. Rohwedel et al., Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev. Biol. 164, 87 (1994).
41. L. Hellman, M. Fried, Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat. Protoc. 2, 1849 (2007).
42. R. Winter, U. Kuhn, G. Hause, E. Schwarz, Polyalanine-independent Conformational Conversion of Nuclear Poly(A)-binding Protein 1 (PABPN1). J. Biol. Chem. 287, 22662 (2012).
43. F. Oberstrass et al., Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 309, 2054 (2005).
44. W. van Der Houven Van Oordt, K. Newton, G. Screaton, J. Caceres, Role of SR protein modular domains in alternative splicing specificity in vivo. Nucleic Acids Res. 28, 4822 (2000).
45. S. Pedrotti, R. Busa, C. Compagnucci, C. Sette, The RNA recognition motif protein RBM11 is a novel tissue-specific splicing regulator. Nucleic Acids Res. 40, 1021 (2012).
46. H. Ichijo et al., Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275, 90 (1997).
47. A. Keren, Y. Tamir, E. Bengal, The p38 MAPK signaling pathway: a major regulator of skeletal muscle development. Mol. Cell Endocrinol 252, 224 (2006).
48. C. Taniguchi, B. Emanuelli, C. Kahn, Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Bio. 7, 85 (2006).
49. A. Eulalio, I. Behm-Ansmant, E. Izaurralde, P bodies: at the crossroads of post-transcriptional pathways. Nat. Rev. Mol. Cell Bio. 8, 9 (2007).
50. A. Swetloff et al., Dcp1-bodies in mouse oocytes. Mol. Biol. Cell 20, 4951 (2009).
51. N. Kotaja et al., The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. P Natl. Acad Sci. USA 103, 2647 (2006).
52. N. Cougot et al., Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation. J. Neurosci. 28, 13793 (2008).
53. P. Aley et al., Nicotinic acid adenine dinucleotide phosphate regulates skeletal muscle differentiation via action at two-pore channels. P Natl. Acad Sci. USA 107, 19927 (2010).
54. T. Iwasaki, W. Chin, L. Ko, Identification and characterization of RRM-containing coactivator activator (CoAA) as TRBP-interacting protein, and its splice variant as a coactivator modulator (CoAM). J. Biol. Chem. 276, 33375 (2001).
55. J. Andersen et al., Directed proteomic analysis of the human nucleolus. Curr. Biol. 12, 1 (2002).
56. Y. Shav-Tal, PSF and p54nrb/NonO-multi-functional nuclear proteins. FEBS Lett., (2002).
57. K. Prasanth et al., Regulating gene expression through RNA nuclear retention. Cell 123, 249 (2005).
58. C. Bond, A. Fox, Paraspeckles: nuclear bodies built on long noncoding RNA. J. Cell Biol. 186, 637 (2009).
59. L.-L. Chen, G. Carmichael, Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol. Cell 35, 467 (2009).
60. H. Sunwoo et al., MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res. 19, 347 (2009).
61. S. Nakagawa, T. Naganuma, G. Shioi, T. Hirose, Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J. Cell Biol. 193, 31 (2011).
62. M. Marko, M. Leichter, M. Patrinou-Georgoula, A. Guialis, hnRNP M interacts with PSF and p54(nrb) and co-localizes within defined nuclear structures. Exp. Cell Res. 316, 390 (2010).
63. 高. W.-C. Kao, 國立陽明大學 (2004).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63944-
dc.description.abstract真核細胞的基因表現往往會受到mRNA選擇性剪接的調控,進而在不同的組織中形成功能不同的蛋白質。RNA結合蛋白RBM4 具有調節RNA選擇性剪接的功能,可以影響polypyrimidine tract binding protein (PTB) 以及 α-tropomyosin等蛋白質的mRNA剪接。特別的是,動物中僅有哺乳類的RBM4蛋白質C端具有三個alanine-rich片段。過去研究指出一些人類疾病和蛋白質中alanine-rich片段的擴張有關。因此,我希望藉由以刪除RBM4的alanine-rich片段以及取其他物種的RBM4 homologs來研究alanine-rich片段的功能。然而,藉由PTB minigene作為reporter,我們發現刪除alanine-rich 片段並不影響RBM4的選擇性剪接功能。另外,far western assay的結果也顯示刪除alanine-rich 片段並不影響RBM4之self-interaction功能。
最近有研究發現一種由RBM4以及CoAA (RBM14)結合而成的蛋白- CoAZ。其N端具有CoAA的RRM而C端則同RBM4。藉由觀測CoAA以及CoAZ蛋白質在細胞中的位置以及其對於RNA選擇性剪接的影響,我們發現這兩個蛋白質和RBM4有一些類似的功能。根據in vivo splicing的結果,CoAA和CoAA分別影響了PTB 以及E1A reporter的選擇性剪接。另外,免疫螢光染色實驗顯示雖然兩者皆表現於細胞核中,但位置有些差異。CoAZ會形成特殊foci結構且四周圍繞著paraspeckle蛋白質PSF,而CoAA的表現位置則和RBM4有部分重疊。在細胞內過量表現CoAA或CoAZ則和RBM4的作用類似,會促進肌肉細胞分化的相關基因表現。這些結果顯示這三種蛋白質可能有交互作用,影響特定的RNA選擇性剪接以調控細胞分化。
zh_TW
dc.description.abstractIn eukaryotic cells, alternative splicing of mRNA plays important roles in gene regulation and the generation of tissues-specific protein isoforms. The RNA binding motif 4 protein (RBM4) is an alternative splicing regulatory factor and involved in several RNA regulatory processes such as the splicing of polypyrimidine tract binding protein (PTB) and α-tropomyosin pre-mRNA. The C-terminal effector domain of mammalian RBM4 contains three alanine-rich stretches, whereas the homologs in other animals do not. It has been reported that expansion of the alanine tracts in a few proteins is correlated with human illnesses. Thus, we generated several mutant and homolog constructs of RBM4 and examined whether the alanine-rich domain of RBM4 affects its activity in mRNA splicing regulation and proteins interaction. Using PTB minigene as reporter, we demonstrated that deletion of alanine stretches did not impair the splicing activity of RBM4. And by using far western assay, we confirmed that the deletion of the alanine tracts did not affect the self-interaction of RBM4.
Recently, a fusion protein termed CoAZ consists of the RRM-containing N-terminus of CoAA (RBM14) and the C-terminus of RBM4. By examining the localization and function of CoAA and CoAZ protein, we identified that these two proteins have a few overlapped activities as RBM4. CoAA and CoAZ exhibited potentials to change the splicing pattern of PTB or E1A reporters, and through immunofluorescence stain, we showed that both CoAA and CoAZ are nucleus proteins. CoAZ formed foci structures surrounded by paraspeckle protein PSF and CoAA partially colocalized with RBM4. Overexpression of CoAA or CoAZ promotes the muscle specific gene expression and induces myoblast differentiation as RBM4. This implies that these three proteins might have cross interaction and regulate the splicing during the differentiation process of cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:23:56Z (GMT). No. of bitstreams: 1
ntu-101-R99448012-1.pdf: 1964728 bytes, checksum: 3e03ae079c194c692e2cdb756304df05 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsAbstract I
中文摘要 II
Introduction 1
Materials and methods 6
Results 17
Discussion 22
References 27
Figures 32
dc.language.isoen
dc.subject選擇性剪接zh_TW
dc.subject核醣核酸結合蛋白zh_TW
dc.subject肌肉細胞zh_TW
dc.subject分化zh_TW
dc.subjectRNAen
dc.subjectsplicingen
dc.subjectparaspeckleen
dc.subjectdifferentiationen
dc.subjectRBM4en
dc.titleRBM4蛋白選擇性剪接能力之功能性分析zh_TW
dc.titleFunctional characterization of the splicing activity of RBM4en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李芳仁,鄭淑珍
dc.subject.keyword選擇性剪接,核醣核酸結合蛋白,肌肉細胞,分化,zh_TW
dc.subject.keywordRBM4,RNA,splicing,paraspeckle,differentiation,en
dc.relation.page48
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved