Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63926
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中平
dc.contributor.authorTai-Yi Wuen
dc.contributor.author吳泰毅zh_TW
dc.date.accessioned2021-06-16T17:23:18Z-
dc.date.available2017-08-20
dc.date.copyright2012-08-20
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citation[1] Pan, H., C. Yuan, et al. (2011). '3D video disparity scaling for preference and prevention of discomfort.' 786306-786306-786308.
[2] S. Kosov, T. Thormaehlen, H. Seidel, Accurate real-time disparity estimation with variational methods, in: 5th International Symposium on Advances in Visual Computing, Lecture Notes In Computer Science, vol. 5875, Springer-Verlag, 2009, pp. 796–807.
[3] T. Tao, J. C. Koo and H. R. Choi. “A fast block matching algorthim for stereo correspondence”, IEEE Conference on Cybernetics and Intelligent Systems, pp. 38-41, 2008
[4] W. Li and E. Salari, 'Successive elimination algorithm for motion estimation', IEEE Trans. Image Processing, vol. 4, pp.105 -107 1995
[5] S. Forstmann, Y. Kanou, J. Ohya, S. Thuering, A. Schmitt, Real-time stereo by using dynamic programming, in: IEEE Conference on Computer Vision and Pattern Recognition Workshop, vol. 3, 2004, pp. 29–36.
[6] Cox, I., Hingorani, S., Rao, S., and Maggs, B. 1996. A maximum likelihood stereo algorithm. CVIU: Image Understanding, 63(3):542-567.
[7] A. Woods, T. Docherty, and R. Koch, 'Image distortions in stereoscopic video systems', Proc. SPIE Conf. Stereoscopic Displays and Applications , pp.36 -48 1993
[8] D. Kim and K. Sohn, “Depth adjustment for stereoscopic image using visual fatigue prediction and depth-based view synthesis,” in Proc. of 2010 IEEE International Conference on Multimedia and Expo, pp.956-961, Jul.2010
[9] M. T. M. Lambooij and W. A. IJsselsteij, “Visual Discomfort and Visual Fatigue of Stereoscopic Displays: A Review,” J. Imaging Sci. Technol., 53, pp. 1-14, May 2009
[10] M. T. M. Lambooij, W. A. IJsselsteij, and I. Heynderickx,” Visual Discomfort in Stereoscopic Displays: A Review,” SPIE-IS&T, vol. 6490, pp. 1-13, 2007
[11] G. D. Diao, ” 3D Display and Application,” Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Taiwan, Tech. Rep.,2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63926-
dc.description.abstract現今立體顯示技術已經被廣泛地運用在多媒體應用,在這十年間,已經有許多立體視覺的研究與應用。傳統電影院觀賞立體影像的方法有兩種,分別是利用紅藍眼鏡與偏光眼鏡來區分左右影像,使左右眼個別接收不同的影像。當你的眼睛接收到的存在著視差的影像對,立體的感覺就會被人的大腦所產生。
但有些立體影像在拍攝時並沒有考慮到品質(例如:解析度、控制攝影條件精確度),所以這種立體影像可能就會讓人感到不舒服。
我們根據觀賞者的對於立體視覺內容的舒適感與偏好建立一個完整的自動化流程調整影像內容。首先我們使用進階的全域搜尋區塊比對演算法與動態規劃演算法估測視差,然後根據人類視覺舒適條件使用深度繪圖法產生新的舒適影像。在深度繪圖法中,我們利用移動拍攝相機的距離調整視差,並且所有立體視覺繪圖的式子可以被近似成一個簡單的式子藉以調整視差。
zh_TW
dc.description.abstractStereo display technique is popular for multimedia application now day. Researches and applications on stereo vision have been existed for decades. In conventional stereo theater, one watches movies with “3D Anaglyph Glasses” or “3D Polarizer”. The purpose is to make our eyes accept two different images. When our eyes watch the two images with eyes’ parallax difference, the 3D image will be constructed in our brain automatically.
Sometimes, if the 3D contents represented by conventional 3D video format are filmed without quality controlled (e.g. high definition, precise control of the shooting conditions), so they are uncomfortable possibly.
We present a complete flow of automation for tuning stereoscopic 3D content based on viewers’ comfort and preferences. 2D image disparities are computed by exhaustive block matching based estimation algorithm and dynamic programming algorithm. Human visual comfort models are applied to analyze the image disparities and guide the depth tuning (shifting/scaling) in order to generate new stereo views by DIBR with desired and comfortable depth perception. The 3D image warping equations for DIBR are introduced. In our system the shift-camera-separation setup is used, and the 3D image warping equations are simplified to a formula which implies horizontal parallax. Real-life image results are shown to demonstrate the effectiveness of our approach.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:23:18Z (GMT). No. of bitstreams: 1
ntu-101-R99945028-1.pdf: 3113098 bytes, checksum: 0b263c2bd4c536db63dbd7ba55d85177 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Introduction 1
Chapter 2 Overview of Binocular Stereoscopies on 3DTV Display 2
2.1 Depth Perception 3
2.1.1 Monocular Depth Cues 3
2.1.1.1 Linear Perspective 3
2.1.1.2 Interposition 4
2.1.1.3 Texture Gradient 5
2.1.1.4 Color 5
2.1.1.5 Accommodation 6
2.1.1.6 Motion Parallax 7
2.1.1.7 Shadow 7
2.1.1.8 Familiar and Relative Size 8
2.1.2 Binocular Depth Cues 10
2.1.2.1 Convergence 10
2.1.2.2 Binocular Disparity (Stereopsis) 11
2.1.2.3 Horizontal Parallax 11
2.2 Technologies of 3D Display 14
2.3 Causative Factors of Visual Fatigued 17
2.3.1 Excessive binocular disparity 17
2.3.2 Accommodation and convergence mismatch 18
2.3.3 Stereoscopic distortion 20
2.4 Percival’s Zone of Comfort 21
Chapter 3 Overview of Adjustment of Video Stream 22
3.1 Pre-Processing 23
3.1.1 Conversion of YCbCr 24
3.1.2 Calibration of Alignment and Angle 25
3.1.2.1 Sobel Operator 26
3.1.2.2 Sweep to Find the Shift and Angle 27
3.1.3 Correction of Color Difference 27
3.2 Extraction of Disparity 28
3.2.1 Estimation of Disparity 30
3.2.1.1 Successive Elimination Algorithm for Disparity Estimation 30
3.2.1.2 Block Based Dynamic Programming 33
3.2.2 Histogram from Disparity and Correction of Disparity Distribution 34
3.3 Depth Image Based Rendering 35
3.3.1 Rendering with Comfort Zone 35
3.3.1.1 Geometry of stereoscopic video systems 35
3.3.1.2 Simplification of formula 42
3.3.1.3 Image Rendering 43
3.3.2 Hole filling 49
Chapter 4 Experimental Result 50
4.1 Pre-Processing 50
4.1.1 Calibration of Angle and Alignment 50
4.1.2 Color Correction 53
4.2 Extraction of Disparity 54
4.2.1 Estimation of Disparity 54
4.2.1.1 Successive Elimination Algorithm 54
4.2.1.2 Block Based Dynamic Programming 55
4.2.1.3 Correction of Disparity 55
4.3 Depth Image Based Rendering 57
4.3.1 Rendering 57
4.3.2 Hole Filling 58
REFERENCE 59
dc.language.isoen
dc.subject三維zh_TW
dc.subject立體zh_TW
dc.subject深度資訊zh_TW
dc.subject視差估計zh_TW
dc.subject雙眼視差zh_TW
dc.subject深度圖繪圖法zh_TW
dc.subjectdepth image base rendering (DIBR)en
dc.subject3Den
dc.subjectbinocular parallaxen
dc.subjectdepth informationen
dc.subjectdisparity estimationen
dc.subjectStereoen
dc.title基於人因分析之增強人眼觀賞三維影像舒適度演算法zh_TW
dc.titleVisual Comfort Enhancement Algorithms for 3D Movie – according to Human Factor Analysisen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee傅楸善,洪士灝
dc.subject.keyword立體,三維,雙眼視差,深度資訊,視差估計,深度圖繪圖法,zh_TW
dc.subject.keywordStereo,3D,binocular parallax,depth information,disparity estimation,depth image base rendering (DIBR),en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved