Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63914
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor藍崇文
dc.contributor.authorHung-Yu Chenen
dc.contributor.author陳泓宇zh_TW
dc.date.accessioned2021-06-16T17:22:55Z-
dc.date.available2014-08-20
dc.date.copyright2012-08-20
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citation1. 林明獻, 矽晶圓半導體材料技術. 全華, 2011.
2. 施智仁, 定量相場模擬在合金單向固化問題上之研究. 碩士論文,台灣大學化學工程研究所, 2004.
3. Warren, J.A. and J.S. Langer, Prediction of dendritic spacings in a directional-solidificaion experiment. Physical Review E, 1993. 47(4): p. 2702-2712.
4. L. H. Ungar, R.A.B., Celluar interface morphologies in directional solidification. The one-sided model. Physical Review B, 1984. 29: p. 1367–1380.
5. N. Ramprasad, M.J.B., R. A. Brown, Wavelength dependence of cells of finite depth in directional solidification. Physical Review B, 1988. 38: p. 583–592
6. K. Tsiveriotis, R.A.B., Nonlinear local dynamics of the melt/crystal interface of a binary alloy in directional solidification. Physical Review B, 1993. 48: p. 13495–13501.
7. Tokairin, M., et al., Formation mechanism of a faceted interface: In situ observation of the Si(100) crystal-melt interface during crystal growth. Physical Review B, 2009. 80(17): p. 174108.
8. Gotoh, R., et al., Formation mechanism of cellular structures during unidirectional growth of binary semiconductor Si-rich SiGe materials. Applied Physics Letters, 2012. 100(2): p. 021903-021906.
9. Yang, X.B., et al., The critical growth velocity for planar-to-faceted interfaces transformation in SiGe crystals. Applied Physics Letters, 2012. 100(14): p. 141601-141604.
10. Kutsukake, K., et al., Formation mechanism of twin boundaries during crystal growth of silicon. Scripta Materialia, 2011. 65(6): p. 556-559.
11. Yang, X.B., et al., Effect of twin spacing on the growth velocity of Si faceted dendrites. Applied Physics Letters, 2010. 97(17): p. 172104 - 172106.
12. Salgado-Ordorica, M.A., et al., Study of the twinned dendrite tip shape II: Experimental assessment. Acta Materialia, 2011. 59(13): p. 5085-5091.
13. Salgado-Ordorica, M.A., J.L. Desbiolles, and M. Rappaz, Study of the twinned dendrite tip shape I: Phase-field modeling. Acta Materialia, 2011. 59(13): p. 5074-5084.
14. I. Yonenaga, T.T., Y. Ohno, Y. Tokumoto, Cellular structures in Czochralski-grown SiGe bulk crystal. Journal of Crystal Growth, 2010. 312: p. 4.
15. D. J. Eaglesham, A.E.W., L. C. Feldman, N. Moriya, D. C. Jacobson, Equilibrium Shape of Si. Physical Review Letters, 1993. 70: p. 5.
16. 林華愷, 適應性相場模式在多晶高非均向性晶體生長之研究. 碩士論文,台灣大學化學工程研究所, 2010.
17. Sunagawa, I., Crystals: Growth, Morphology, & Perfection. Cambridge University Press, 2005.
18. Jackson, K.A., Liquid Metals and Solidification
ASM,Cleveland, OH, 1958.
19. Beatty, K.M. and K.A. Jackson, Monte Carlo modeling of silicon crystal growth. Journal of Crystal Growth, 2000. 211(1-4): p. 13-17.
20. Boas, C., et al., Comment on 'Effect of the structural anisotropy and lateral strain on the surface phonons of monolayer xenon on Cu(110)'. Physical Review B, 2001. 64(3): p. art. no.-037401.
21. Fujiwara, K., et al., In situ observations of crystal growth behavior of silicon melt. Journal of Crystal Growth, 2002. 243(2): p. 275-282.
22. Sekerka, R.F., Equilibrium and growth shapes of crystals: how do they differ and why should we care? Crystal Research and Technology, 2005. 40(4-5): p. 291-306.
23. 李孟翰, 定量相場模式在模擬合金護問題之比較研究. 碩士論文,台灣大學化學工程研究所, 2005.
24. 蔡亞陸, 定量相場模式在三維合金垂直固化之研究. 碩士論文,台灣大學化學工程研究所, 2008.
25. Nestler, B. and A. Choudhury, Phase-field modeling of multi-component systems. Current Opinion in Solid State & Materials Science, 2011. 15(3): p. 93-105.
26. R. W. Olesinski, G.J.A., The Ge-Si (Germanium-Silicon) System. Bulletin of Alloy Phase Diagrams, 1984. 5: p. 4.
27. W. A. Tiller, K.A.J., J. W. Rutter, B. Chalmers, The redistribution of solute atoms during the solidification of metals. Aca Metall, 1953. 1: p. 428–437.
28. Du, A. and Y.Y. Xu, Effect of the surface anisotropy and the shape on the magnetization behavior in an egg-shaped nanoparticle. Journal of Magnetism and Magnetic Materials, 2008. 320(21): p. 2567-2570.
29. Chen, M.W., et al., The effect of anisotropic surface tension on the morphological stability of planar interface during directional solidification. Chinese Physics B, 2009. 18(4): p. 1691-1699.
30. Glimm, J., et al., The Bifurcation of Tracked Scalar Waves. Siam Journal on Scientific and Statistical Computing, 1988. 9(1): p. 61-79.
31. Sussman, M., P. Smereka, and S. Osher, A LEVEL SET APPROACH FOR COMPUTING SOLUTIONS TO INCOMPRESSIBLE 2-PHASE FLOW. Journal of Computational Physics, 1994. 114(1): p. 146-159.
32. Fix, G.J., Free Boundary Problems:Theory and Applications, 1983. 2: p. 580.
33. Langer, J. and T. Fuchs, Simultaneous Occurence of a Fixed Drug Eruption and Anaphylactic Reaction Caused by Trimethoprim-Sulfamethoxazole. Allergologie, 1986. 9(12): p. 542-544.
34. Beckermann, C., et al., Modeling melt convection in phase-field simulations of solidification. Journal of Computational Physics, 1999. 154(2): p. 468-496.
35. Gelfand, I.M., Calculus of Variations. 1963.
36. Karma, A. and W.J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions. Physical Review E, 1998. 57(4): p. 4323-4349.
37. Amberg, G., Semisharp Phase Field Method for Quantitative Phase Change Simulations. Physical Review Letters, 2003. 91(26): p. 265505.
38. Vetsigian, K. and N. Goldenfeld, Computationally efficient phase-field models with interface kinetics. Physical Review E, 2003. 68(6).
39. Thomas U. Kaempfer, M.P., Phase-field modeling of dry snow metamprphism. Physical Review E, 2009. 79: p. 17.
40. Karma, A., Phase-Field Formation for Quantitative modeling of Alloy Solidification. Physical Review Letters, 2001. 87: p. 4.
41. Shih, C.J., M.H. Lee, and C.W. Lan, A simple approach toward quantitative phase field simulation for dilute-alloy solidification. Journal of Crystal Growth, 2005. 282(3–4): p. 515-524.
42. Echebarria, B., et al., Quantitative phase-field model of alloy solidification. Physical Review E, 2004. 70(6): p. 061604- 061626.
43. J. C. Ramirez, C.B., A. Karma, H. J. Diepers, Phase-field modeling of binary alloy solidification with heat and solute diffusion. Physical Review E 2004. 69: p. 16.
44. Uehara, T. and R.F. Sekerka, Phase field simulations of faceted growth for strong anisotropy of kinetic coefficient. Journal of Crystal Growth, 2003. 254(1-2): p. 251-261.
45. Miller, W., et al., Cellular growth of single crystals. Journal of Crystal Growth, 2008. 310(7–9): p. 1405-1409.
46. Miller, W., I. Rasin, and D. Stock, Evolution of cellular structures during Ge_{1−x}Si_{x} single-crystal growth by means of a modified phase-field method. Physical Review E, 2010. 81(5): p. 051604.
47. 劉其俊, 適應性有限體積法 的開法及其在固化上的應用. 碩士論文,台灣大學化學工程研究所, 2001.
48. 許晉銘, 在強制對流下樹枝狀晶體成長之適應性相場模式. 碩士論文,台灣大學化學工程研究所, 2002.
49. 莊明軒, 適應性等位函數法在固化問題之模擬. 碩士論文,台灣大學化學工程研究所, 2006.
50. 陳昶志, 三維適應性相場模式在樹枝狀晶體生長之研究. 碩士論文,台灣大學化學工程研究所, 2010.
51. Provatas, N., N. Goldenfeld, and J. Dantzig, Efficient computation of dendritic microstructures using adaptive mesh refinement. Physical Review Letters, 1998. 80(15): p. 3308-3311.
52. Chen, C.C., Y.L. Tsai, and C.W. Lan, Adaptive phase field simulation of dendritic crystal growth in a forced flow: 2D vs 3D morphologies. International Journal of Heat and Mass Transfer, 2009. 52(5-6): p. 1158-1166.
53. Gotoh, R., et al., Formation mechanism of cellular structures during unidirectional growth of binary semiconductor Si-rich SiGe materials. Applied Physics Letters, 2012. 100(2).
54. Karma, A. and W.-J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions. Physical Review E, 1998. 57(4): p. 4323-4349.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63914-
dc.description.abstract固化過程中,界面失穩是一個很重要的課題,因界面形態會影響材料品質。一般常見的物質已經有很多研究投入於其中,例如金屬材料NiCu及有機材料SCN-ACT等,但對於高熔點晶體如矽(Si)等,由於其熔點高達1683 K的關係,相關實驗較少。近年來,Fujiwara et al.發表對矽凝固界面形態觀察的研究,於2009年開始,更對單晶矽及矽鍺合金的界面不穩定性現象,發表了一些深入且結構完整的文章,但是相關模擬還是很缺乏•本文主旨為使用相場模式模擬Fujiwara的實驗並與其結果相比較,開始時選用該實驗所發表參數進行模擬,其中提出實驗溫梯G = 8 K/mm,但模擬的結果並無法得到不穩定行為。於此我們進一步使用熱傳分析及古典理論分析,得到理論溫梯應為G = 1 ~ 2 K/mm,並將此溫梯代入二維的相場模式,可以得到不穩地性的行為。在確認不穩定性參數後,我們也根據實驗所得到的界面形態,討論模擬中一些重要的參數,如凹陷動力學在相場模式中為必要的考量參數,其扮演角色為決定奇異面的形態,而界面能高非均向性強度(ε4),所扮演的角色為不穩定波長之選擇因子。在矽鍺合金實驗中,實驗觀察出不同鍺濃度下,其臨界長速滿足古典理論預測,另一方面,不同晶向的條件與不穩定行為無關,在此我們的模擬也得到相同的結論。最後,我們模擬出在高濃度著(15 at%)的條件下,和實驗類似的界面形態。zh_TW
dc.description.abstractIn the solidification process, the morphological instability of solidification is a very important problem, people had discussed some metal or organic material such as NiCu and SCN-ACT for this topic very well. But because of the high melting point of silicon, there are few paper discuss the instability phenomenon for silicon growth. From 2002, Fujiwara et al. had published some experiment result for silicon growth, and from 2009, they published more experiment for the instability phenomenon for silicon and silicon –germanium. At first we use the parameter given by Fujiwara, they claim the temperature gradient of the system is 8 K/mm, but we can’t simulate the instability. And then we use the classical theory and heat transfer analysis, we found that the temperature gradient is 1 K/mm, and by using the parameter we can found the instability phenomenon in 2D simulation. We also discuss the impact of some physical parameters, such as the cusp kinetic is the requirement and the role of the surface energy anisotropy is determining the wavelength of instable pattern. In the SiGe system, we found the SiGe instability follow the classical theory and the instability behavior is independent of orientation, both of the two conclusion is the same as Fujiwara et al claim. Finally, we simulate the morphology like experiment result very well for 15 at% Ge.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:22:55Z (GMT). No. of bitstreams: 1
ntu-101-R99524073-1.pdf: 3732298 bytes, checksum: fe51da30fd43246640867559f5a8f698 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
第1章 緒論 1
1.1 前言 1
1.2 矽鍺的材料性質介紹 2
1.2-1 界面能非均向性 3
1.2-2 動力學非均向性 3
1.3 不穩定性現象 6
1.3-1 純矽之不穩定性現象 6
1.3-2 矽鍺合金不穩定性現象 8
第2章 長晶系統及古典理論 11
2.1 固化理論 11
2.1-1 純物質系統 11
2.1-2 雙成分合金系統 12
2.2 不穩定性分析理論 15
第3章 物理模式與數值分析 19
3.1 相場模式 19
3.1-1 熱力學推導模式 20
3.1-2 幾何模式 21
3.1-3 Thin Interface Model以及其使用條件 21
3.1-4 Thin Interface Model的限制 22
3.1-5 合金相場模式 24
3.1-6 Ramirez相場模式方程式 25
3.1-7 界面過冷修正 26
3.2 非均向性模式 29
3.2-1 界面能高非均向性模式 29
3.2-2 動力學高非均向性模式 29
3.2-3 數值方法 32
3.2-4 有限體積法 32
3.2-5 適應性網格結構 35
3.2-6 程式流程介紹 40
第4章 結果與討論 45
物理問題描述 45
4.1 古典理論及熱場分析 47
4.1-1 輻射熱 47
4.1-2 Mullins-Sekerka理論分析 49
4.1-3 坩鍋壁絕緣效應 51
4.2 二維純矽模擬 58
4.2-1 動力學在垂直固化的探討 58
4.2-2 其他定性形狀之解釋 75
4.3 矽鍺合金模擬 78
4.4 高濃度矽鍺合金 88
第5章 結果與討論 90
附錄 91
大λ問題: 91
Ramirez Model 與 Echebarria Model的比較 96
dc.language.isozh-TW
dc.subject單晶矽zh_TW
dc.subject矽鍺合金zh_TW
dc.subject界面不穩定zh_TW
dc.subject奇異面生長zh_TW
dc.subjectfacet growthen
dc.subjectmorphological instabilityen
dc.subjects-siliconen
dc.subjectsilicon-germaniumen
dc.title適應性相場模式在矽鍺合金單向固化的界面形態之研究zh_TW
dc.titleAdaptive Phase Field Modeling of Morphological Instability in Directional Solidification of SiGe Alloyen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉致為,洪儒生,何國川
dc.subject.keyword奇異面生長,界面不穩定,單晶矽,矽鍺合金,zh_TW
dc.subject.keywordfacet growth,morphological instability,s-silicon,silicon-germanium,en
dc.relation.page102
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved