Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63910Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 邱逢琛 | |
| dc.contributor.author | Yi-Ting Chien | en |
| dc.contributor.author | 簡義庭 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:22:47Z | - |
| dc.date.available | 2013-08-20 | |
| dc.date.copyright | 2012-08-20 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-16 | |
| dc.identifier.citation | 1. M. Sfakiotakis, D.M.L., J.B.C. Davies, Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering, 1999. 24: p. 237-252.
2. Lighthill, M.J., Hydrodynamics of aquatic animal propulsion. Annual Review of Fluid Mechanics, 1969. 1: p. 413–446. 3. N. Bose, J.L., Propulsion of a fin whale (Balaenoptera physalus): why the fin whale is a fast swimmer. Proceedings of the Royal Society of London, 1989. B237: p. 175–200. 4. Lighthill, M.J., Aquatic animal propulsion of high hydromechanical efficiency. Journal of Fluid Mechanics, 1970. 44(265-301). 5. Chopra, M.G., Hydromechanics of lunate-tail swimming propulsion. Journal of Fluid Mechanics, 1974. 64: p. 375-391. 6. Chopra, M.G., Large amplitude lunate-tail theory of fish locomotion. Journal of Fluid Mechanics, 1976. 74: p. 161-182. 7. Koochesfahani, M.M., Vortical patterns in the wake of an oscillating foil. AIAA Journal, 1989. 27: p. 1200-1205. 8. J.C.S. Lai, M.F.P., Jet characteristics of a plunging airfoil. AIAA Journal, 1999. 37: p. 1529-1537. 9. J.M. Anderson, K.S., D.S. Barrett, M.S. Triantafyllou, Oscillating foils of high propulsive efficiency. Journal of Fluid Mechanics, 1998. 360: p. 41-72. 10. D.A. Read, F.S.H., M.S. Triantafyllou, Forces on oscillating foils for propulsion and maneuvering. Journal of Fluids and Structures, 2003. 17: p. 163-183. 11. F.S. Hover, O.H., M.S. Triantafyllou, Effect of angle of attack profiles in flapping foil propulsion. Journal of Fluids Structures, 2004. 19: p. 37-47. 12. L. Schouveiler, F.S.H., M.S. Triantafyllou, Performance of flapping foil propulsion. Journal of Fluids and Structures, 2005. 20: p. 949-959. 13. K. Ohmi, M.C., T.P. Loc, A. Dulieu, Vortex formation around an oscillation and translating airfoil at large incidences. Journal of Fluid Mechanics, 1990. 211: p. 37-60. 14. Mccroskey, W.J., Unsteady airfoils. Annual Review of Fluid Mechanics, 1982. 14: p. 285-311. 15. R. Gopalkrishnan, M.S.T., D. Barrett, Acitive vorticity control in a shear flow using a flapping foil. J. Fluid Mech, 1994. 274: p. 1-21. 16. D.N. Beal, F.S.H., M.S. Triantafyllou, J.C. Liao, G.V. Lauder, Passive propulsion. J. Fluid Mech, 2006. 549: p. 385-402. 17. 莊承翰, 串列式雙振動翼之流體動力實驗分析, 2010, 國立台灣大學. 18. 陳佰暘, 起伏縱搖耦合串列式雙振動翼之推進性能研究, 2011, 國立台灣大學. 19. 張政傑, 串列式雙振動翼助推器設計改良之研究, 2010, 國立台灣大學. 20. J.M. Miao, M.H.H., Effect of flexure on aerodynamic propulsive efficiency of flapping flexible airfoil. Journal of Fluids and Structures, 2006. 22: p. 401-419. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63910 | - |
| dc.description.abstract | 近年,自主式水下滑翔機已迅速發展成探測海洋的利器,它們已經被成功證明是可以應用在探測廣大海洋與採樣的工具。自主式水下滑翔機使用浮力引擎調整浮力和重心,並結合翼板產生的上升與下沉力,作為水下滑翔機前進的動力。其中,它的運動軌跡為上升與下降的鋸齒狀軌跡。因此,水下滑翔機受限於運動軌跡,只能進行基本的海洋探測與採樣,對於在特定水平深度的偵搜能力,則無法做到。本研究目的即開發水下滑翔機水平移動的推進裝置,且為了保有自主式水下滑翔機長航程低耗能的優勢,提出仿生推進器設計概念應用在串列式雙振動翼推進裝置上,研究振動翼在水平推進的能力。串列式雙振動翼推進裝置採用前翼當作渦產生器和主翼當作渦控制器。串列式雙振動翼與過去單一振動翼文獻相比,推力與效率皆有明顯提升,增加振動翼推進裝置使用水下載具的可能性。
本研究透過計算流體動力分析軟體FLUENT,模擬雙振動翼在起伏縱搖耦合運動之流體動力對振動翼之影響,並確認前翼與主翼的影響對推進性能的貢獻。結果顯示,最佳雙振動翼運動條件下,前翼對振動翼整體增加了推進效率與跡流渦街的增強。在雙振動翼最佳推力與最佳效率條件下與單振動翼相比,分別增加了26%的推力,其推力係數為1.26與增加20%的效率,其效率可高達80%。 | zh_TW |
| dc.description.abstract | Autonomous underwater gliders have rapidly become mature technologies in recent years. They have also been proved to be a successful tool for ocean sampling with an even wider range of future possibilities. An underwater glider is propelled by a buoyancy engine to adjust the difference between buoyancy and weight, combining with the lift induced by the wing. In general, an underwater glider can ascend and descend obliquely on a sawtooth trajectory but it lacks capability to move horizontally. Due to this reason, a concept design of biomimetic propulsor with two serial flapping foils for enhancing the horizontal mobility of an underwater glider was proposed. The propulsor consists of a flapping fore foil acting as a leading edge vortex generator, and a flapping rear foil acting as a vortex manipulator. It was found in the previous paper that both thrust and efficiency can be improved significantly in comparing with the single foil model. However, the propulsion efficiency of the serial foils oscillating with only pitch motion is still not sufficient for practical use; even it has been enhanced by an added fore foil.
Two flapping foils in series with heave-pitch coupled motions are expected to have much higher propulsion efficiency. The investigations on its hydrodynamic characteristics via CFD simulations are conducted in the present paper. The master-foil effects and the fore-foil contributions on propulsive performance are clarified. The optimal flapping modes of the fore foil on enhancing the propulsion efficiency are discussed and their corresponding wake mechanisms are demonstrated. It is known that the optimal thrust coefficient and efficiency of the present two-foil model increase approximately 26% and 20% higher than the single fin model and their magnitudes reach 1.26 and 79.52%, respectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:22:47Z (GMT). No. of bitstreams: 1 ntu-101-R99525001-1.pdf: 9494566 bytes, checksum: 90ab0e48bf078ceecefb08a814366484 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III ABSTRACT IV 目錄 VI 圖目錄 IX 表目錄 XIII 符號說明 XIV 第1章 導論 1 1-1 研究背景與目的 1 1-2 文獻回顧 3 1-2-1 單振動翼之文獻 3 1-2-2 啟發雙振動翼之文獻 5 1-3 本文架構 8 第2章 串列式雙振動翼幾何架構與運動模式 9 2-1 振動翼幾何形狀設計理念、座標系統與轉軸位置定義 9 2-1-1 幾何形狀設計理念 10 2-1-2 座標系統與轉軸位置定義 11 2-2 振動翼運動模式設定與推導 12 2-2-1 主翼運動方程式 12 2-2-2 前翼運動方程式推導 15 2-2-3 振動翼起伏運動與攻角關係推導 17 2-3 振動翼力矩計算方式 18 2-3-1 主翼力矩計算推導 18 2-3-2 前翼力矩計算推導 20 2-4 流體無因次參數 21 2-4-1 雷諾數(Reynolds number)Re 21 2-4-2 史特豪數(Strouhal number)St 22 2-5 振動翼性能係數 24 第3章 統御方程式與數值模擬方法 25 3-1 網格生成與品質 25 3-1-1 網格產生方式 25 3-1-2 數值擴散 26 3-1-3 網格品質 26 3-1-4 動態網格理論 28 3-1-5 定義邊界條件 29 3-2 統御方程式 30 3-2-1 質量守恆方程式 30 3-2-2 動量守恆方程式 30 3-3 紊流模式 31 3-3-1 RANS方程式 32 3-3-2 Realizable k-epsilon方程式 33 3-4 數值方法 34 3-4-1 有限體積法 34 3-4-2 流場壓力速度耦合求解 34 3-4-3 流場壓力速度耦合求解方法選擇 40 第4章 振動翼數值模擬結果與討論 41 4-1 網格設計與數值模擬驗證 41 4-1-1 網格品質改善方法 41 4-1-2 邊界區網格 43 4-1-3 跡流區網格 47 4-1-4 計算域網格選定與數值模擬驗證 50 4-1-5 網格應用 54 4-2 雙振動翼之純縱搖運動研究 56 4-2-1 運動方程式與流體動力參數估算方式 56 4-2-2 單一主翼純縱搖運動 58 4-2-3 雙振動翼之前翼相位差關係 62 4-2-4 結果與討論之雙振動翼與單一主翼純縱搖差異 68 4-3 雙振動翼之起伏縱搖耦合運動研究 70 4-3-1 運動方程式與流體動力參數估算方式 70 4-3-2 單一主翼起伏縱搖耦合運動 72 4-3-3 雙振動翼之前翼相位差關係 79 4-3-4 雙振動翼之前翼振幅關係 89 4-3-5 結果與討論之雙振動翼與單一主翼起伏縱搖耦合差異 93 4-4 三振動翼之起伏縱搖耦合運動研究 94 4-4-1 運動方程式與流體動力參數估算方式 94 4-4-2 三振動翼之尾翼相位差關係 96 4-4-3 三振動翼之後翼振幅關係 101 4-4-4 結果與討論之三振動翼與雙振動翼起伏縱搖耦合差異 104 第5章 結論與建議 105 參考文獻 107 | |
| dc.language.iso | zh-TW | |
| dc.subject | 流體動力特徵 | zh_TW |
| dc.subject | 水下滑翔機 | zh_TW |
| dc.subject | 振動翼 | zh_TW |
| dc.subject | 起伏縱搖運動 | zh_TW |
| dc.subject | Hydrodynamic Characteristics | en |
| dc.subject | flapping foil | en |
| dc.subject | Heave-Pitch Coupled Motions | en |
| dc.subject | Underwater Glider | en |
| dc.title | 串列式雙振動翼仿生推進器之流體動力研究 | zh_TW |
| dc.title | Hydrodynamics of a Biomimetic Propulsor
with Two Flapping Foils in Series | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周顯光,曾國正,郭振華,方銘川 | |
| dc.subject.keyword | 流體動力特徵,振動翼,起伏縱搖運動,水下滑翔機, | zh_TW |
| dc.subject.keyword | Hydrodynamic Characteristics,flapping foil,Heave-Pitch Coupled Motions,Underwater Glider, | en |
| dc.relation.page | 108 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| Appears in Collections: | 工程科學及海洋工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-101-1.pdf Restricted Access | 9.27 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
