Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63909
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭朱杏(Chuhsing Kate Hsiao)
dc.contributor.authorLu-Hsiang Huangen
dc.contributor.author黃律翔zh_TW
dc.date.accessioned2021-06-16T17:22:45Z-
dc.date.available2015-09-17
dc.date.copyright2012-09-17
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citation參考文獻
1. Pritchard, J.K. and Cox, N.J. The allelic architecture of human disease genes: common disease–common variant… or not? Human Molecular Genetics, 2002. 11(20): p. 2417-2423.
2. Bodmer, W. and Bonilla, C. Common and rare variants in multifactorial susceptibility to common diseases. Nature Genetics, 2008. 40(6): p. 695-701.
3. Pritchard, J.K., Are Rare Variants Responsible for Susceptibility to Complex Diseases? American Journal of Human Genetics, 2001. 69(1): p. 124-137.
4. Schork, N.J., et al., Common vs. rare allele hypotheses for complex diseases. Current Opinion in Genetics & Development, 2009. 19(3): p. 212-219.
5. Manolio, T.A., et al., Finding the missing heritability of complex diseases. Nature, 2009. 461(7265): p. 747-753.
6. Maher, B., Personal genomes: The case of the missing heritability. Nature, 2008. 456: p. 18-21.
7. Eichler, E.E., et al., Missing heritability and strategies for finding the underlying causes of complex disease. Nature reviews. Genetics., 2010. 11(6): p. 446-450.
8. Cirulli, E.T. and Goldstein, D.B. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nature reviews. Genetics., 2010. 11(6): p. 415-425.
9. Ji, W., et al., Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nature Genetics, 2008. 40(5): p. 592-599.
10. Stefansson, H., et al., Large recurrent microdeletions associated with schizophrenia. Nature, 2008. 455(7210): p. 232-236.
11. Walsh, T., et al., Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia. Science, 2008. 320(5875): p. 539-543.
12. Nejentsev, S., et al., Rare Variants of IFIH1, a Gene Implicated in Antiviral Responses, Protect Against Type 1 Diabetes. Science, 2009. 324(5925): p. 387-389.
13. McClellan, J. and King, M.C. Genetic heterogeneity in human disease. Cell, 2010. 141(2): p. 210-7.
14. Galvan, A., Ioannidis, J.P. and Dragani, T.A. Beyond genome-wide association studies: genetic heterogeneity and individual predisposition to cancer. Trends in genetics, 2010. 26(3): p. 132-41.
15. Asimit, J. and Zeggini, E. Rare Variant Association Analysis Methods for Complex Traits. Annual Review of Genetics, 2010. 44(1): p. 293-308.
16. Bansal, V., et al., Statistical analysis strategies for association studies involving rare variants. Nature Reviews Genetics, 2010. 11(11): p. 773-785.
17. Morgenthaler, S. and Thilly, W.G. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: A cohort allelic sums test (CAST). Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2007. 615(1–2): p. 28-56.
18. Li, B. and Leal, S.M. Methods for Detecting Associations with Rare Variants for Common Diseases: Application to Analysis of Sequence Data. American Journal of Human Genetics, 2008. 83(3): p. 311-321.
19. Madsen, B.E. and Browning, S.R. A Groupwise Association Test for Rare Mutations Using a Weighted Sum Statistic. PLoS Genetics, 2009. 5(2): p. 1-11.
20. Feng, T., Elston, R.C. and Zhu, X. Detecting rare and common variants for complex traits: sibpair and odds ratio weighted sum statistics (SPWSS, ORWSS). Genetic Epidemiology, 2011. 35(5): p. 398-409.
21. Morris, A.P. and Zeggini, E. An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genetic Epidemiology, 2010. 34(2): p. 188-193.
22. Han, F. and Pan,W. A Data-Adaptive Sum Test for Disease Association with Multiple Common or Rare Variants. Human Heredity, 2010. 70(1): p. 42-54.
23. Zhang, Q., et al., A data-driven method for identifying rare variants with heterogeneous trait effects. Genetic Epidemiology, 2011. 35(7): p. 679-685.
24. Ionita-Laza, I., et al., A New Testing Strategy to Identify Rare Variants with Either Risk or Protective Effect on Disease. PLoS Genetics, 2011. 7(2): p. e1001289.
25. Price, A.L., et al., Pooled Association Tests for Rare Variants in Exon-Resequencing Studies. American Journal of Human Genetics, 2010. 86(6): p. 832-838.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63909-
dc.description.abstract中文摘要
全基因體關聯性研究主要是針對與複雜性疾病相關的單一核苷酸多型性 (single nucleotide polymorphism)進行研究,這些研究多半侷限於次要對偶基因頻率 (minor allele frequency) 大於百分之五的部分;即使如此,這些單一核苷酸多型性卻還是不足以回答真正導致疾病發生的原因。由於生物技術的進步,透過次世代定序 (next-generation sequencing) 的技術,科學家開始探討罕見變異 (rare variants) 在複雜性遺傳疾病中所扮演的角色,希望透過這些罕見變異來找到導致複雜性疾病發生的基因。
目前對於罕見變異所發展的統計方法,主要是將一段遺傳區域內所有的罕見變異整合 (pooling) 為一個單元 (如摺疊法,collapsing method) 來考慮,再檢定這一個單元跟複雜性疾病之間的相關性。採用上述策略來分析有兩個優點,第一點是能夠降低我們分析資料之維度,第二點則是能夠避開稀疏性 (sparsity) 的問題;此外,這種透過摺疊法來分析的檢定力也比單一標誌基因分析方法 (single marker analysis) 來的好,已經有許多統計方法是根據摺疊法來發展的。由於要將一段區域內的罕見變異整合為一個單元,其間牽涉到對各個單一標誌基因的權重 (weight) 問題,有些學者給予它們一樣的加權;有些人則是利用控制組的罕見變異對偶基因頻率的標準差或罕見變異與疾病之間的關聯性大小來給予不同的加權比重。雖然這些方法考慮了不同的變異對於疾病的影響可能會不一樣而給予不同的權重,但卻都未考慮到遺傳異質性 (genetic heterogeneity) 中表型異質性 (phenotypic heterogeneity) 的部分。
在本文中,我們提出了一個混合加權 (hybrid weight) 的方法,同時考慮每個罕見變異對於疾病的差異性以及每個人的表型差異性,前者部分由單一罕見變異與二元或是連續型疾病表型的關聯性進行加權;後者則由人與人之間的相似度 (similarity) 來進行加權,這裏我們透過漢明距離 (hamming distance) 來測量人與人之間的不相似度,當某個人與其他人的表型不相似度越高時我們會給予這個人較低的權重;反之,則給予較高的權重。
為了解本文所提出之方法的表現,本文透過模擬研究,將本文所提出的方法與其他方法之第一型誤差以及檢定力做比較;並且本文也利用英國Wellcome Trust Case Control Consortium study (WTCCC) 中的冠狀動脈心臟病(coronary artery disease, CAD) 研究所蒐集的單一核苷酸多型性資料進行分析,嘗試找出與導致冠狀動脈心臟病發生的相關標誌基因。
zh_TW
dc.description.abstractABSTRCT
Most genome-wide association studies (GWAS) focusing on effects of common variants have failed to identify the susceptible genes associated with the common disease of interest. With the recent advancement of next-generation sequencing (NGS) technologies, scientists begin to investigate rare variants that may have higher effect sizes than common variants and contribute to the fraction of heritability that remains unexplained. Current methods considered a pooling strategy to test the joint effect of multiple rare variants. This pooling approach has the advantage of low dimensionality and is free of sparsity. In addition, it has been shown to exhibit larger power than single marker testing procedures. Several pooling methods assigned unequal weights that depend on marker allele frequencies or single-marker risks. These weights allow different variants to contribute differently to the risk of disease, but cannot account for the genetic heterogeneity including phenotypic heterogeneity. In this study, we propose a hybrid weight to combine the single variant effect and the individual heterogeneity. The proposed weight is composed of two parts. One represents the association between the disease status, binary or quantitative, and single rare variant. The other stands for the individual similarity. Here we adopt hamming distance to measure the similarity between any pair of individuals. Higher similarity leads to a larger weight on the individual considered. The performance of this test is demonstrated with simulation studies and the comparison with other methods is conducted based on type I error and power evaluation.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:22:45Z (GMT). No. of bitstreams: 1
ntu-101-R99849006-1.pdf: 2345339 bytes, checksum: a99959514cab6a13f9d6a99ed69d1645 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
口試委員審定書 i
致謝 ii
中文摘要 iv
Abstract vi
目錄 viii
圖表目錄 ix
1. 背景與文獻回顧 1
2. 研究方法 8
3. 以WTCCC的冠狀動脈心臟病 (CAD) 研究為例 13
4. 結論與討論 18
參考文獻 21
圖表目錄
表ㄧ. 選擇9p21.3上5個顯著罕見變異之基本描述性資料 24
表二. 選擇9p21.3上10個顯著罕見變異之基本描述性資料. 25
表三. 選擇9p21.3上20個顯著罕見變異之基本描述性資料 26
表四. 選擇9p21.3上5個未顯著罕見變異之基本描述性資料 27
表五. 選擇9p21.3上10個未顯著罕見變異之基本描述性資料 28
表六. 選擇9p21.3上20個未顯著罕見變異之基本描述性資料 29
表七. 選擇9p21.3上20個顯著罕見變異(10個正向,10個負向)之基本描述性資料 30
表八. 各個方法在不同個數的罕見變異時之檢定力 31
表九. 各個方法在不同個數的罕見變異時之型一誤差 32
表十. 各個方法在同時存在保護性及危險性罕見變異時之檢定力 33
dc.language.isozh-TW
dc.subject勝算比zh_TW
dc.subject摺疊法zh_TW
dc.subject漢明距離zh_TW
dc.subject相似度zh_TW
dc.subject加權總和統計量zh_TW
dc.subject複雜性遺傳疾病研究zh_TW
dc.subjectWeighted sum statisticen
dc.subjectGenetic association studyen
dc.subjectHamming distanceen
dc.subjectOdds ratioen
dc.subjectSimilarityen
dc.subjectCollapsingen
dc.title利用混合加權方法對於罕見遺傳變異進行關聯性分析zh_TW
dc.titleA Hybrid Weight-Based Method for Genetic Association Studies with Rare Variantsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭柏秀(Po-Hsiu Kuo),李美賢(Mei-Hsien Lee)
dc.subject.keyword加權總和統計量,相似度,漢明距離,勝算比,摺疊法,複雜性遺傳疾病研究,zh_TW
dc.subject.keywordCollapsing,Genetic association study,Hamming distance,Odds ratio,Similarity,Weighted sum statistic,en
dc.relation.page33
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved