請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63886完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李明學 | |
| dc.contributor.author | Yuan-Pei Ha | en |
| dc.contributor.author | 哈元蓓 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:22:00Z | - |
| dc.date.available | 2015-09-19 | |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-16 | |
| dc.identifier.citation | 1. Cancer, I.A.f.R.o., Cancer Worldwide. International Agency for Research on Cancer, 2011.
2. 中華民國行政院衛生署. Taiwan, 2011. 3. Kasper, S. and M.S. Cookson, Mechanisms leading to the development of hormone-resistant prostate cancer. Urol Clin North Am, 2006. 33(2): p. 201-10, vii. 4. Wang, G., et al., Targeting prostate cancer stem cells for cancer therapy. Discov Med, 2012. 13(69): p. 135-42. 5. Bjerkvig, R., et al., Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer, 2005. 5(11): p. 899-904. 6. Takebe, N., et al., Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol, 2011. 8(2): p. 97-106. 7. Mani, S.A., et al., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008. 133(4): p. 704-15. 8. Ailles, L.E. and I.L. Weissman, Cancer stem cells in solid tumors. Curr Opin Biotechnol, 2007. 18(5): p. 460-6. 9. Tu, S.M. and S.H. Lin, Prostate cancer stem cells. Clin Genitourin Cancer, 2012. 10(2): p. 69-76. 10. Ugolkov, A.V., et al., Expression analysis of putative stem cell markers in human benign and malignant prostate. Prostate, 2011. 71(1): p. 18-25. 11. Pera, M.F. and P.P. Tam, Extrinsic regulation of pluripotent stem cells. Nature, 2010. 465(7299): p. 713-20. 12. Kastler, S., et al., POU5F1P1, a putative cancer susceptibility gene, is overexpressed in prostatic carcinoma. Prostate, 2010. 70(6): p. 666-74. 13. Chen, Y.C., et al., Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One, 2008. 3(7): p. e2637. 14. Jeter, C.R., et al., NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene, 2011. 30(36): p. 3833-45. 15. Jia, X., et al., SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell. J Mol Cell Biol, 2011. 3(4): p. 230-8. 16. Kawaguchi, T., et al., Purification and cloning of hepatocyte growth factor activator inhibitor type 2, a Kunitz-type serine protease inhibitor. J Biol Chem, 1997. 272(44): p. 27558-64. 17. Marlor, C.W., et al., Identification and cloning of human placental bikunin, a novel serine protease inhibitor containing two Kunitz domains. J Biol Chem, 1997. 272(18): p. 12202-8. 18. Muller-Pillasch, F., et al., Cloning of a new Kunitz-type protease inhibitor with a putative transmembrane domain overexpressed in pancreatic cancer. Biochim Biophys Acta, 1998. 1395(1): p. 88-95. 19. Denda, K., et al., Functional characterization of Kunitz domains in hepatocyte growth factor activator inhibitor type 1. J Biol Chem, 2002. 277(16): p. 14053-9. 20. Parr, C., A.J. Sanders, and W.G. Jiang, Hepatocyte growth factor activation inhibitors - therapeutic potential in cancer. Anticancer Agents Med Chem, 2010. 10(1): p. 47-57. 21. Bergum, C. and K. List, Loss of the matriptase inhibitor HAI-2 during prostate cancer progression. Prostate, 2010. 70(13): p. 1422-8. 22. Hamasuna, R., et al., Reduced expression of hepatocyte growth factor activator inhibitor type-2/placental bikunin (HAI-2/PB) in human glioblastomas: implication for anti-invasive role of HAI-2/PB in glioblastoma cells. Int J Cancer, 2001. 93(3): p. 339-45. 23. Nakamura, K., et al., Hepatocyte growth factor activator inhibitor-2 (HAI-2) is a favorable prognosis marker and inhibits cell growth through the apoptotic pathway in cervical cancer. Ann Oncol, 2009. 20(1): p. 63-70. 24. Lin, C.Y., et al., Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J Biol Chem, 1999. 274(26): p. 18231-6. 25. Lee, M.S., Matrix-Degrading Type II Transmembrane Serine Protease Matriptase: Its Role in Cancer Development and Malignancy. Journal of Cancer Molecules, 2006. 2(5): p. 183-190. 26. Shimomura, T., et al., Hepatocyte growth factor activator inhibitor, a novel Kunitz-type serine protease inhibitor. J Biol Chem, 1997. 272(10): p. 6370-6. 27. Lee, M.S., et al., Simultaneous activation and hepatocyte growth factor activator inhibitor 1-mediated inhibition of matriptase induced at activation foci in human mammary epithelial cells. Am J Physiol Cell Physiol, 2005. 288(4): p. C932-41. 28. Saleem, M., et al., A novel biomarker for staging human prostate adenocarcinoma: overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1. Cancer Epidemiol Biomarkers Prev, 2006. 15(2): p. 217-27. 29. Lee, S.L., R.B. Dickson, and C.Y. Lin, Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem, 2000. 275(47): p. 36720-5. 30. Bocheva, G., et al., Role of matriptase and proteinase-activated receptor-2 in nonmelanoma skin cancer. J Invest Dermatol, 2009. 129(7): p. 1816-23. 31. Szabo, R., et al., c-Met-induced epithelial carcinogenesis is initiated by the serine protease matriptase. Oncogene, 2011. 30(17): p. 2003-16. 32. Birchmeier, C., et al., Met, metastasis, motility and more. Nat Rev Mol Cell Biol, 2003. 4(12): p. 915-25. 33. Peters, S. and A.A. Adjei, MET: a promising anticancer therapeutic target. Nat Rev Clin Oncol, 2012. 9(6): p. 314-26. 34. Ishibe, S., et al., Met and the epidermal growth factor receptor act cooperatively to regulate final nephron number and maintain collecting duct morphology. Development, 2009. 136(2): p. 337-45. 35. Yamamoto, N., et al., Tyrosine phosphorylation of p145met mediated by EGFR and Src is required for serum-independent survival of human bladder carcinoma cells. J Cell Sci, 2006. 119(Pt 22): p. 4623-33. 36. Clevers, H., The cancer stem cell: premises, promises and challenges. Nat Med, 2011. 17(3): p. 313-9. 37. Nakamura, K., et al., The role of hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2 in endometrial cancer. Int J Cancer, 2011. 128(11): p. 2613-24. 38. Chiou, S.H., et al., Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res, 2010. 70(24): p. 10433-44. 39. Szabo, R., et al., Potent inhibition and global co-localization implicate the transmembrane Kunitz-type serine protease inhibitor hepatocyte growth factor activator inhibitor-2 in the regulation of epithelial matriptase activity. J Biol Chem, 2008. 283(43): p. 29495-504. 40. Chen, M., et al., Hepsin activates prostasin and cleaves the extracellular domain of the epidermal growth factor receptor. Mol Cell Biochem, 2010. 337(1-2): p. 259-66. 41. Sorkin, A. and M. von Zastrow, Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol, 2009. 10(9): p. 609-22. 42. Clarke, M.F., et al., Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res, 2006. 66(19): p. 9339-44. 43. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-72. 44. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-20. 45. Wen, J., et al., Oct4 and Nanog expression is associated with early stages of pancreatic carcinogenesis. Pancreas, 2010. 39(5): p. 622-6. 46. Leis, O., et al., Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene, 2012. 31(11): p. 1354-65. 47. Girouard, S.D., et al., SOX2 contributes to melanoma cell invasion. Lab Invest, 2012. 92(3): p. 362-70. 48. van Leenders, G.J., et al., Activation of c-MET induces a stem-like phenotype in human prostate cancer. PLoS One, 2011. 6(11): p. e26753. 49. Li, Y., et al., c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc Natl Acad Sci U S A, 2011. 108(24): p. 9951-6. 50. Gherardi, E., et al., Targeting MET in cancer: rationale and progress. Nat Rev Cancer, 2012. 12(2): p. 89-103. 51. Li, J., et al., MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation, 2007. 75(4): p. 299-307. 52. Enomoto, A., et al., UV-B radiation induces macrophage migration inhibitory factor-mediated melanogenesis through activation of protease-activated receptor-2 and stem cell factor in keratinocytes. Am J Pathol, 2011. 178(2): p. 679-87. 53. Wiesner, C., et al., C-kit and its ligand stem cell factor: potential contribution to prostate cancer bone metastasis. Neoplasia, 2008. 10(9): p. 996-1003. 54. Leong, K.G., et al., Generation of a prostate from a single adult stem cell. Nature, 2008. 456(7223): p. 804-8. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63886 | - |
| dc.description.abstract | 癌症幹細胞是指具有幹細胞特性的癌細胞,其擁有自我更新以及分化成腫瘤細胞的能力。雖在腫瘤中通常只占一小部分,但被認為是造成癌症惡化或抗藥性的主要原因。為了進一步探討癌症幹細胞之主要控制基因在攝護腺癌的惡化過程所扮演的角色,我們建構出一套可模擬攝護腺癌惡化轉移的細胞模式進行研究。人類攝護腺癌細胞CWR22Rv1經由原位注射打入老鼠攝護腺內,14周後,將轉移到肺組織中的攝護腺癌細胞進行分離培養,並命名為14w CWR22Rv1。我們發現,在癌症轉移惡化過程中,第二型肝細胞生長因子活化抑制者(HAI-2) 的表現有隨之下降的趨勢,同時與癌症幹細胞相關的蛋白質如Nanog和Oct-4,以及其他與癌症惡化相關的蛋白質,如間質蛋白酶 (matriptase)的表現和c-Met等訊息傳遞分子的活化也隨之升高。為了進一步研究HAI-2 在攝護腺癌惡化過程中所扮演的角色,我們利用HAI-2的shRNA減弱HAI-2的基因表現,結果顯示,降低HAI-2的表現量使癌症幹細胞相關分子Sox2的表現增加,並伴隨著細胞侵襲、移動力以及自我更新能力的提升。同時也致使matriptase和c-Met、EGFR以及ERK訊息分子的活化。當將HAI-2過量表現於較為惡化的14w CWR22Rv1細胞時,Sox2、matriptase的表現量以及c-Met分子的活化現象相對受到抑制,並抑制了細胞自我更新的能力。我們進一步的研究顯示間質蛋白酶的大量表達和HAI-2基因表達的減弱,對上述分子在攝護腺癌細胞所造成的影響非常類似,並且有促進細胞自我更新的作用。此外,我們觀察到降低HAI-2的表現量所誘使Sox2表現上升的情況也隨著將c-Met的激酶活性的抑制而減弱。綜合上述結果,這些證據顯示HAI-2在攝護腺癌細胞中可經由間質蛋白酶和c-Met訊息的傳遞路徑來調控癌症幹細胞相關分子,例如Sox2基因的表達。 | zh_TW |
| dc.description.abstract | Cancer stem cells (CSCs)/cancer initiating cells represent a minor population of tumor cells with the properties of self-renewal or cancer progenitor cells, contributing to tumor progression. To further delineate the molecular mechanisms of prostate cancer progression linked to the expression changes of stem cell-related genes, a prostate cancer progression model was established by orthotopic injection of prostate cancer CWR22Rv1 cells into nude mice. Fourteen weeks after the injection, the tumor cells metastazing into the lung were isolated as 14w CWR22Rv1 cells. Interestingly, the expression level of hepatocyte growth factor activator inhibitor type 2 (HAI-2) in 14w CWR22Rv1 cells was down-regulated, while the expression levels of the stem cell-related transcription factors (Oct-4 and Nanog), the activated level of matriptase and the tyrosine phosphorylation level of c-Met were increased in these cells. To further clarify if HAI-2 played a role in modulating prostate cancer malignancy, we used HAI-2 shRNAs to silence HAI-2 expression, and found that the knockdown of HAI-2 enhanced CWR22Rv1 cell invasion, migration, sphere formation, and the expression levels of Sox2. Moreover, HAI-2 knockdown activated matriptase and the phosphorylation of c-Met, EGFR and ERK. In addition, overexpression of HAI-2 or HAI-1 in 14w CWR22Rv1 cells down-regulated the expression of Sox2 and significantly activated matriptase and the phosphorylation of c-Met. Our data further showed that an increase of matriptase activation by overexpression had similar effects to HAI-2-knockdown cells on Sox2 expression, the phosphorylation of c-Met as well as sphere-forming potentials. Furthermore, inhibition of the c-Met kinase activity in HAI-2-knockdown cells reduced the expression of Sox2. Therefore, our data suggest that HAI-2 may play an inhibitory role in regulating the stem cell-related properties of prostate cancer cells through modulating matriptase and c-Met pathways. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:22:00Z (GMT). No. of bitstreams: 1 ntu-101-R99442031-1.pdf: 2449234 bytes, checksum: e412a03a5a544965af13d05f170e4f03 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致謝 II
摘要 III Abstract IV Chapter 1: Introduction 1 1.1 Prostate cancer 2 1.2 Cancer stem cells 2 1.3 Cancer stem cell markers 3 1.4 Hepatocyte growth factor activator inhibitor type 2 (HAI-2) 4 1.5 Matriptase and HAI-1 5 1.6 c-Met signaling 6 1.7 Research Motivation 9 Chapter 2: Materials and methods 10 2.1 Materials 11 2.2 Methods 14 Chapter 3: Results 22 3.1 Establishment and characterization of a lung-metastatic prostate cancer model 23 3.2 Roles of HAI-2 in the expression of stem cell-related transcription factors 25 3.3 Inhibitory roles of HAI-2 in prostate cancer cell invasion, migration and self-renewal capacities 26 3.4 Matriptase and signaling pathways in human prostate cancer cell progression model 27 3.5 Roles of HAI-2 knockdown in matriptase, c-Met, EGFR and ERK in prostate cancer cells 28 3.6 Roles of HAI-1 and HAI-2 on the expression levels of stem cell-related transcription factors in 14w CWR22Rv1 cells 29 3.7 Effects of HAI-1 and HAI-2 overexpression on matriptase, c-Met, EGFR and ERK in 14w CWR22Rv1 cells 30 3.8 Inhibitory roles of HAI-1 and HAI-2 in the sphere-forming capacities of 14w CWR22Rv1 cells 30 3.9 Role of matriptase in the expression of stem cell-related transcription factors and in the phosphorylation levels of c-Met and ERK 31 3.10 Inhibition of c-Met kinase down-regulated the expression of Sox2. 32 Chapter 4: Discussion 34 Chapter 5: Figure 40 Chapter 6: References 61 | |
| dc.language.iso | en | |
| dc.subject | 癌症幹細胞 | zh_TW |
| dc.subject | 第二型肝細胞生長因子活化抑制者 | zh_TW |
| dc.subject | 間質蛋白酶 | zh_TW |
| dc.subject | c-Met | zh_TW |
| dc.subject | Sox2 | zh_TW |
| dc.subject | HAI-2 | en |
| dc.subject | cancer stem cell | en |
| dc.subject | Sox2 | en |
| dc.subject | matriptase and c-Met | en |
| dc.title | 第二型肝細胞生長因子活化抑制者在攝護腺癌細胞對癌症幹細胞相關分子的影響 | zh_TW |
| dc.title | Hepatocyte growth factor activator inhibitor type 2 (HAI-2) acts as a negative regulator for cancer stem cell-related factors in prostate cancer cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林敬哲,蕭培文,黃祥博,林泰元 | |
| dc.subject.keyword | 第二型肝細胞生長因子活化抑制者,間質蛋白酶,癌症幹細胞,Sox2,c-Met, | zh_TW |
| dc.subject.keyword | HAI-2,cancer stem cell,Sox2,matriptase and c-Met, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
