Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63868
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄧茂華(Mau-Hua Teng)
dc.contributor.authorShang-Ting Wuen
dc.contributor.author吳尚庭zh_TW
dc.date.accessioned2021-06-16T17:21:24Z-
dc.date.available2012-08-19
dc.date.copyright2012-08-19
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citation[1] C.W. Burnham (1963) “Refinement of the crystal structure of kyanite”, Zeitschrift fur Kristallographie. 118, pp.337-360.
[2] J.K Winter and S. Ghose (1979) “Thermal expansion and high-temperature crystal chemistry of the Al2SiO5 polymorphs”, American Mineralogist, Vol. 64, pp. 573–586.
[3] A.R. Oganov, J.P. Brodholt (2000) “High-pressure phases in the Al2SiO5 system and the problem of aluminous phase in the Earth’s lower mantle” ab initio calculations”, Phys. Chem. Minerals, Vol. 27, pp. 430-439.
[4] 凌賢長、盧良兆、徐學純 (2000) “魯東造山帶榴輝岩變質作用特徵及其動力學機制”, 岩石礦物學雜誌, Vol. 19, pp. 140–151.
[5] 楊天南、張子軍 (2001) “蘇魯造山帶東部榮成榴輝岩中藍晶石及綠輝石的分解”, 岩石礦物學雜誌, Vol. 32, pp. 22–27.
[6] D.C. Jain, J.J Brown and C.B. Kay (1974) “Study of thermal decomposition of kyanite using density measurements”, Ceramic Bulletin, Vol. 53, pp. 650–653.
[7] H. Schneider and A. Majdič (1980) “Kinetics of the thermal decomposition of kyanite”, Ceramurgia International, Vol. 6, pp. 61–66.
[8] W.C. Wei and J.W. Halloran (1988) “Transformation Kinetics of Diphasic Aluminosilicate Gels”, Journal of American Ceramic Society, Vol. 71, pp.581–587.
[9] H. Schneider and A. Majdič (1979) “Kinetics and mechanism of the solid-state high-temperature transformation of andalusite into 3/2-mullite and silica”, Ceramurgia International, Vol. 5, pp. 31–36.
[10] B. Marie-Laure, I. Jean-Pierre, P. Jacques, and D. Pierre (2005) “Mullite grown from fired andalusite grains: the role of impurities and of the high temperature liquid phase on the kinetic of mullitization and consequences onthermal shocks resistance”, Ceramics International, Vol. 31 , pp.999-1005.
[11] H. Schneider and A. Majdič (1981) “Preliminary investigations on the kinetics of the high-temperature transformation of sillimanite to 3/2-mullite and comparison with the behavior of andalusite and kyanite”, Sci. Ceram., Vol. 11, pp. 191–196
[12] S.R. Bohlen, A. Montana, and D.M. Kerrick (1991) “precise determinations of the equilibria kyanite ⇋ sillimanite and kyanite ⇋ andalusite and a revised triple point for Al2SiO5 polymorphs”, Am. Mineral., Vol. 76, pp. 677-680.
[13] F.J. Klug, S. Prochazka, R.H. Doremus (1987) “Alumina-Silica Phase Diagram in the Mollite Region”, J. Am. Ceram. Soc., Vol. 70, pp. 750–759.
[14] J. Aguilar-Santillan, R. Cuenca-Alvarez, and H. Balmori-Ramirez (2002) “Mechanical activation of the decomposition and sintering of kaynite”, J. Am. Ceram. Soc., Vol. 85, pp. 2425–2431.
[15] 李博文、周珣若、翁潤生 (1999) “藍晶石微粉的燒結性能及其機制”, 耐火材料, Vol. 33, pp. 320–322.
[16] 宋繼芳、李君文 (2003) “高溫燒結條件下藍晶石的莫來石化”, 礦產綜合利用, Vol. 5, pp. 27–29.
[17] H. Saalfeld and W, Junge (1983) “Thermal decomposition of kyanite single crystals”, Tschermaks Min. Petr. Mitt., Vol. 31, pp. 17–26.
[18] M.A. Sainz, F.J. Serrano, J. Bastida, and A. Caballero (1997) “Microstructural evolution and growth of crystallite size of mullite during thermal transformation of kyanite”, Journal of the European Ceramic Society, Vol. 17, pp. 1277–1284.
[19] I.D. Kashcheev, V.M. Ust’yantsev, and S.N. Sychev (2007) “Kyanite concentrate of the Karabash deposit: phase transformations during heating”, Refractories and Industrial Ceramicss, Vol. 48, pp. 250-254.
[20] Zoe Barber (2005) “Introduction to materials modeling”, Maney Publishing, statue of Materials, London.
[21] H.S. Tripathi, S.K. Das, and G. Banerjee, “Thermal Schock Behavior of High
Alumina Aggregates Derived from Sillimanite Beach Sand with and without Fe2O3 Doping,” Ceramurgia Int., 26 [1] 1–6 (2000).
[22] 梁家豪 (2003) “三種分析反應動力學及燒結資料的新方法”,國立台灣大學碩士論文。
[23] 林書弘 (2007) “蒸發岩礦物熱分解反應動力學之研究方法與應用探討”,國立台灣大學碩士論文。
[24] 王紹宇 (2011) “主導動力學曲線與三種不同動力學模型之比較研究”,國立台灣大學碩士論文。
[25] 連維帆 (2010) “銳鈦礦-金紅石與霰石-方解石相變反應之主導動力學曲線研究”,國立台灣大學碩士論文。
[26] 張育維 (2007) “奈米二氧化鈦之視燒結活化能與相變研究”,國立台灣大學碩士論文。
[27] IUPAC, Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Doi:10.1351/goldbook.A00446.
[28] R. Kirchheim, X.Y. Huang (1987) ”A Relationship between prefactor and activation energy for diffusion“, physica status solidi (b)., Vol. 144, pp.253–257.
[29] M. Avrami (1939) ' Kinetics of Phase Change. I”, Journal of Chemical Physics , vol. 7, p.1103-1112.
[30] M. Avrami (1940) ' Kinetics of Phase Change. II”, Journal of Chemical Physics , vol. 8, p.212-224.
[31] M. Avrami (1941) ' Kinetics of Phase Change. III”, Journal of Chemical Physics , vol. 9, p.177-18.
[32] C.H. Bamford and C.F.H. Tipper (1980) “Reaction in the solid state”, Comprehensive Chemical Kinetics, Vol. 22, Else. Sci. Pub. Co., New York.
[33] A.A. Gribb and J.F. Banfield (1997) “Particle size effect on transformation kinetics and phase stability in nanocrystalline TiO2”, Am. Mineral, Vol. 82, pp. 717–728.

[34] J. Morales, L. Hernan and L.V. Flores (1997) “The applicability of DSC techniques to the study of the kinetics of phase transformation reactions', Journal of thermal analysis., Vol. 24, pp. 23-34.
[35] C. Rodriguez Navarro, G. Cultrone, A. Sanchez Navas, and E. Sebastian (2003) “TEM study of mullite growth after muscovite breakdown”, Am. Mineral., Vol.88, pp. 713–724.
[36] 陳俐穎 (2009) “探討奈米至微米尺度之鑽石氧化反應動力學機制”,國立台灣大學碩士論文。
[37] A.R. West (1986) “Solid State Chemistry and its Applications” Chichester West Sussex and New York.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63868-
dc.description.abstract藍晶石為高壓變質帶典型指標礦物之一,透過研究其相變與熱分解反應動力學,能重建變質帶的演化情形與古溫壓環境,在礦物學、岩石學與反應動力學領域中是重要的研究題材。本研究藉由觀察藍晶石於熱分解反應過程中的微結構變化,以及利用主導動力學曲線(Master Kinetics Curve, MKC)與Avrami方程式等兩種動力學模型,分析熱分解實驗數據,藉由所得結果瞭解藍晶石之熱分解行為,並嘗試釐清其反應機制。
研究方法可分為三部分:首先以X光粉末繞射儀(XRD)與電子微探儀(EPMA)對藍晶石粉末、單晶樣本進行定性與定量分析;第二部分使用管型高溫爐以及熱膨脹儀進行藍晶石熱分解反應,同時擷取文獻中的藍晶石熱分解反應數據和本研究結果進行比較。第三部分則透過掃描式電子顯微鏡(SEM)觀察藍晶石樣本於反應前後所發生之微結構變化,並利用主導動力學曲線與Avrami方程式分析所得到的實驗數據,建立反應預測模型確認動力學模型的適用性。最後則綜合微結構及動力學模型分析結果,探討藍晶石熱分解反應可能的反應機制。
藍晶石在高溫下將分解為富鋁紅柱石與二氧化矽玻璃相或方矽石。觀察藍晶石粉末與單晶的微結構變化,可發現兩者之熱分解反應皆發生於(100)面上,但藍晶石粉末熱分解後僅形成富鋁紅柱石單一晶相,二氧化矽則以非晶質相出現;藍晶石單晶則除了富鋁紅柱石外,亦可觀察到二氧化矽非晶質相與方矽石。在動力學模型分析方面,本研究確認主導動力學曲線與Avrami方程式皆適用於描述藍晶石的熱分解反應,且分析結果顯示藍晶石粉末之熱分解反應可能由單一機制所控制;藍晶石單晶之熱分解反應則具有兩種反應機制。綜合微結構觀察結果與動力學模型之分析結果,本研究推論藍晶石熱分解反應隨生成物變化而有所不同:若熱分解反應產生富鋁紅柱石與二氧化矽非晶質相,此時反應機制為擴散控制;而產物轉變為富鋁紅柱石與方矽石相時,則由介面機制控制其熱分解反應。
zh_TW
dc.description.abstractMany studies have discussed the thermal decomposition of kyanite; such interest is due both to its importance in the geosciences and in regard to the ceramic process. However, there are no detailed crystallographic studies on the decomposition of kyanite and, therefore, no decisive clues regarding the decomposition reaction mechanism. In this study, a detailed analysis of the microstructure evolution during the decomposition reaction, and two kinetics model: Master Kinetics Curve and Avrami Equation Method have been employed to determine the underlying mechanism of the thermal decomposition of kyanite.
This research consists of three parts: The first is an examination of the crystal phases and chemical composition of kyanite powders and single crystals by X-ray diffractometer (XRD) and Electron Probe Microanalyzer (EPMA). In the second, a series of thermal decomposition experiments of the powders and single crystals by High-T furnace and dilatometer at isothermal conditions is conducted. In the third part, the morphology of kyanite powders and single crystals is observed by scanning electron microscope (SEM). The decomposed experimental data which was generated by High-T tube-furnace and dilatometer was also analyzed by Master Kinetics Curve and Avrami Equation. The results of microstructure evolution, combined with the Master kinetics Curve and Avrami Equation analysis may help us to obtain a more thorough understanding of the decomposition process.
In this work, the SEM images of kyanite powders and single crystals showed that thin needles of mullite and SiO2 liquid phase developed along cleavage planes (100), and the mullite crystallite revealed a distinct tendency to grow along preferred orientation. Moreover, the cristobalite crystallite embedded in a SiO2 liquid phase was observed when the single crystals were heated above 1300oC, indicating that the reaction process may differ between the kyanite powders and single crystals. The experimental results revealed that the Master Kinetics Curve and Avrami Equation can analyze and describe the reaction process of the experimental data of kyanite powders, indicating that the thermal decomposition of kyanite powder is controlled by a single mechanism. However, the results of Master Kinetics Curve indicated that the decomposition of a single crystal is controlled by a multi-mechanism. The Avrami Equation also suggested that the reaction process of a single crystal is diffusion-controlled at reaction temperature between 1250oC and 1300oC; the reaction mechanism was changed to interface-controlled within the temperature range of 1300oC to 1325oC.
In conclusion, the results of MKC and Avrami analysis suggest that at temperatures below 1300oC, the reaction mechanism probably differs from that of temperatures exceeding 1300oC, at which point the cristobalite is presented. Therefore, the reaction mechanism of thermal decomposition of kyanite seems strongly correlated to the presence of cristobalite crystallites.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:21:24Z (GMT). No. of bitstreams: 1
ntu-101-R98224115-1.pdf: 37329341 bytes, checksum: 5694d16b265a73ec9c2cabc521f3ff36 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝…………………………………………………………..…………..……….. i
中文摘要………………………………………………………………….………. ii
英文摘要…………...……….…………………………………………….………. iii
目錄…………………………………………………………..…………..……….. v
附錄目錄………………………………………………………………………….. ix
圖目錄…………………………………………..………………………………… ix
表目錄…………………………………………………..………………………… xiv

第一章 緒論……………………………………………………….……………. 1
1.1 研究目的……………………………………………...………………... 1
1.2 研究方法.……….……………………………….……………………... 3
1.3 本文內容…….……………………………….………………………… 4
第二章 文獻回顧……………………………………………………………….. 6
2.1 藍晶石熱分解反應…………………………………………………….. 6
2.1.1 藍晶石晶體結構與熱分解反應關係………………………….. 9
2.1.2 熱分解反應機制………..………..…………….………….…… 10
2.1.3 微結構變化…...…………………….………………………….. 11
2.1.4 藍晶石燒結-熱分解反應………..………..…………….……. 14
2.2 影響藍晶石熱分解反應之可能因素………………………………….. 16
2.3 化學反應動力學…..…..…………..…………………………………... 17
2.4 主導動力學曲線模型...……….………………………..……………… 18
2.4.1 主導動力學曲線之推導過程…………......………………… 19
2.4.2 反應活化能與視活化能..……………………………….. ……. 21
2.5 Arami Equation的介紹…………………………….……………. …… 23
2.6 第二章重點回顧………………... ………………….……………. ….. 26
第三章 實驗方法……………………………………………………………….. 28
3.1 研究步驟與流程………………………....……………….…………… 28
3.1.1 實驗流程圖……………………....……………….…………… 29
3.1.2 樣本準備與分析……………....……………….……………… 30
3.1.3 藍晶石熱分解反應實驗及數據蒐集…….….………………… 30
3.1.4 微結構觀察與動力學模型分析..………….…………………... 30
3.1.5 結果與討論……………………....……………….…………… 30
3.2 重要儀器配合使用……………………....……………….…………… 31
3.2.1 X光粉末繞射分析儀……....……………….………………….. 31
3.2.2 電子微探分析儀……………....……………….……………… 32
3.2.3 掃描式電子顯微鏡…….….…………………... ……………… 33
3.2.4 能量散射光譜儀與波長散射光譜儀………………......... 34
3.2.5 單壓型壓片機及模具……....……………….…………………. 34
3.2.6 管型高溫爐……………………....……………….…………… 35
3.2.7 熱膨脹儀……………………....……………….……………… 36
3.3 樣本前處理……………………....……………….…………………..... 38
3.4 藍晶石熱分解反應……………………....……………….…………… 40
3.5 計算反應百分比……………………....……………….……………… 43
3.5.1 粉末反應百分比換算…………....……………….………......... 43
3.5.2 晶體反應百分比換算……………………....……………….… 44
3.5.3 粉末胚體反應百分比換算……………………....…………… 44
3.6 微結構觀察……………………....……………….…………………..... 44
3.7 動力學模型分析……………………....……………….……………… 45
3.8 第三章重點回顧……………………....……………….……………… 45
第四章 結果與討論…………………………..……………………………..…. 46
4.1 藍晶石定性及定量分析結果…….………..…………………………. 46
4.1.1 X光粉末繞射儀分析結果………..………………………….… 46
4.1.2 樣本組成:電子微探儀分析結果………..…………………….. 47
4.1.3 掃描式電子顯微鏡分析結果………..………………………… 48
4.2 微結構觀察結果與討論………..………………………….…………... 50
4.2.1 藍晶石粉末觀察結果與討論………..………………………… 51
4.2.2 藍晶石單晶觀察結果與討論………..………………………… 53
4.2.3 偏光顯微鏡觀察結果與討論………..………………………… 56
4.3 藍晶石熱分解反應實驗數據………..………………………………… 57
4.4 MKC與Avrami方程式分析藍晶石熱分解結果………..……………. 59
4.4.1 文獻反應資料分析結果與討論………..……………………… 59
4.4.2 藍晶石粉末反應資料結果與討論………..…………………… 61
4.4.3 造成系統誤差可能原因………..……………………………… 67
4.4.4 藍晶石單晶熱分解結果與討論………..……………………… 67
4.4.5 動力學分析結果整理與比較………..………………………… 70
4.5 藍晶石熱分解反應視活化能值比較………..………………………… 72
4.6 藍晶石熱分解反應機制………..……………………………………… 72
第五章 結論與建議……………………………………………………………. 76
參考文獻…………………………………………………..……………………… 78
附錄……………………………………..………………………………………… 82
dc.language.isozh-TW
dc.subject藍晶石zh_TW
dc.subject熱分解反應zh_TW
dc.subject主導動力學曲線zh_TW
dc.subjectAvrami方程式zh_TW
dc.subject反應機制zh_TW
dc.subjectkyaniteen
dc.subjectthermal decompositionen
dc.subjectMaster Kinetics Curveen
dc.subjectAvrami Equationen
dc.subjectmechanismen
dc.title藍晶石熱分解反應微結構變化與動力學探討zh_TW
dc.titleStudy on the Microstructure Evolution and the Kinetics during Thermal Decomposition of Kyaniteen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉雅瑄,余炳盛,林招松
dc.subject.keyword藍晶石,熱分解反應,主導動力學曲線,Avrami方程式,反應機制,zh_TW
dc.subject.keywordkyanite,thermal decomposition,Master Kinetics Curve,Avrami Equation,mechanism,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2012-08-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
36.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved