請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63835
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 羅筱鳳(Hsiao-Feng Lo) | |
dc.contributor.author | Jia-Ling Li | en |
dc.contributor.author | 李佳玲 | zh_TW |
dc.date.accessioned | 2021-06-16T17:20:24Z | - |
dc.date.available | 2017-08-27 | |
dc.date.copyright | 2012-08-27 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-17 | |
dc.identifier.citation | 1. 王宗德、宋湛謙、姜志寬、陳金珠、陳超、韓招久. 2006. 薄荷醇酯類衍生物的合成及其驅蚊活性的初步研究. 江西農業大學學報 28:766-768.
2. 方煒. 2001. 自動化植物工廠. p. 103-112. 刊於:林達德、李桂芝編著. 農業自動化叢書第十一輯. 國立臺灣大學生物產業機電工程學系. 臺北. 3. 王銀波. 1989. 培養液的化學性及其管理. 養液栽培技術講習會專刊第二輯.鳳山熱帶園藝試驗分所編印. p. 60-68. 4. 王銀波、吳正宗. 1992. 水耕養液中的氮素問題. 養液栽培技術講習會專刊第四輯. 鳳山熱帶園藝試驗分所編印. p. 15-27. 5. 王暉、吳鐵. 1998. 薄荷及其有效成分藥理作用的研究概況. 中草藥 6:422-424. 6. 王廣要、周虎、曾曉峰. 2006. 植物精油應用研究進展. 食品科技 5:11-14. 7. 田青平、董紅偉. 2000. 混合型結石在純的薄荷油中的溶石研究. 山西醫科大學學報 1:36-38. 8. 朱慧、胡斌、張軍、陳季武、秦海燕 2006. 綠薄荷非精油組成份清除自由基和活性氧的研究. 華東師範大學學報 2:136-140. 9. 池小雷、周蓉、鄧懷波. 2007. 薄荷提取物的抗氧化性研究. 安徽農業科學 35:9847-9848. 10. 行政院農業委員會農糧署. 2012. 各項作物產量排序查詢. <http://agr.afa.gov.tw/afa/afa_frame.jsp> 2012.06.25 11. 行政院農業委員會農糧署. 2012. 農產品交易行情站. < http://amis.afa.gov.tw/>2012.06.27 12. 吳立軍、吳斌、高慧媛、陳廣通、鄭健. 2006a. 留蘭香的活性成分(I). 瀋陽藥科大學學報 3:145-147. 13. 吳立軍、吳斌、高慧媛、陳廣通、楊小珂、鄭健. 2006b. 留蘭香的活性成分(II). 瀋陽藥科大學學報 4:212-215. 14. 沈再發. 1997. 養液之配製與管理. p. 182-190. 刊於:梁鴞編著. 設施園藝技術. 豐年社. 臺北. 15. 沈再發、許淼淼. 1989. 作物營養特性及影響養液組成之因素. 養液栽培技術講習會專刊第二輯. 鳳山熱帶園藝試驗分所編印. p. 44-59. 16. 吳志文、羅文冠、林素汝. 2009. 薄荷品種介紹. 高雄區農業專訊. 高雄區農業改良場. 70:17-19. 17. 沈紅、林彤、段金廒、黃靚雯、錢大瑋、錢士輝. 2007. 不同生長期薄荷中三萜酸類成分種累的動態變化研究. 中草藥 6:932-933. 18. 李郁淳. 2006. 氯化銨處理對尖葉萵苣及小白菜生育及硝酸鹽含量之影響. 國立中興大學碩士論文. 臺中. 19. 宋魁、譚勇、龔昌祿、張立. 2009. 天然香料植物-薄荷. 現代農業科技 1:105-106. 20. 林木連. 2005. 薄荷. p. 28. 刊於:羅秋雄編著. 作物施肥手冊. 中華肥料協會. 臺中. 21. 林岱平. 2006. 在亞熱帶生產低硝酸鹽蔬菜-主婦聯盟生活消費合作社檢驗資料之分析. 國立臺灣大學園藝所碩士論文. 臺北. 22. 金若敏、劉紅杰. 2006. 薄荷油研究進展. 山東中醫藥大學學報 30:502-505. 23. 柯勇. 2004. 植物生理學. 第一版. 藝軒圖書出版社. 臺北. 臺灣. 24. 徐原田. 1988. 薄荷. p. 170-179. 刊於:梁鴞編著. 經濟植物集. 豐年社. 臺北. 25. 馬雅軍、楊頻、廉振民. 2004. 五種植物精油薰殺致倦庫蚊的效果. 第二軍醫大學學報 25:1094-1096 26. 高德錚. 1988. 精緻農業水耕栽培技術. 行政院青年輔導委員會. 臺北. 27. 倪禮豐、鍾仁賜. 1997. 採收時間及遮陰對芥藍菜(Brassica oleracea L.)氮組成及硝酸還原酵素活性的影響. 花蓮區研究彙報 14:61-76. 28. 陳光亮、姚道云、汪遠金. 2001. 薄荷油藥理作用和急性毒性的研究. 中藥藥理與臨床 1:10-12. 29. 梁呈元、李維林、張涵慶、任冰如. 2003. 薄荷化學成分及其藥理作用研究進展. 中國野生植物資源 3:9-12. 30. 張定霖、洪進雄、吳昭祥. 2003. 香藥草植物圖鑑. 行政院農業委員會種苗改良繁殖場. 臺中. 31. 張祖亮. 1998. 養液栽培之應用技術. 種苗生產自動化技術通訊. 財團法人農業機械化研究發展中心. 臺北. 32. 莊琇真、黃信彰. 2008. 腸躁症的最新觀念、診斷與治療. 基層醫學 9:278-286. 33. 經濟部國際貿易局. 2012. 中華民國進出口貿易統計. <http://cus93.trade.gov.tw/fsci/> 2012.06.25 34. 黃梅、王學軍、楊凱. 2006. 中藥抗氧化成分及抗氧化活性的體外評價方法. 重慶科技學院學報 8:109-111. 35. 劉紅杰、金若敏. 2006. 薄荷油研究進展. 山東中醫藥大學學報 6:205-208. 36. 劉布鳴、賴茂祥. 2005. 廣西藥用精油植物資源與應用. 廣西中醫學院學 8:83-88. 37. 閻峻、王維亭、趙專友、湯立達. 2006. 薄荷油治療腸易激綜合徵的藥理與臨床研究. 國外醫藥.植物藥分冊 21:59-62. 38. 羅秋雄. 2003. 作物營養障礙診斷與防治手冊. 行政院農業委員會桃園區農業改良場. 桃園. 臺灣. 39. Abu-Rayyan, A., B.H. Kharawish, and K. Al-Ismail. 2004. Nitrate content in lettuce (Lactuca sativa L.) heads in relation to plant spacing, nitrogen form and irrigation level. J. Sci. Food Agr. 84:931-936. 40. Adiguzel, A., D. Daferera, M. Gulluce, H. Ozer, H. Ozkan, M. Polissiou, F. Sahin, A. Sokmen, and M. Sokmen. 2007. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chem. 103:1449-1456. 41. Afolayan, A.J., O.T. Asekun, and D.S. Grierson. 2007. Effects of drying methods on the quality and quantity of the essential oil of Mentha longifolia L. subsp. capensis. Food Chem. 101:995-998. 42. Alberici, A., E. Quattrini, M. Penati, and M. Schiavi. 2008. Effect of the reduction of nutrient solution concentration on leafy vegetables quality grown in floating system. Acta Hort. 801:1167-1176. 43. Alonso, W.R., J.I.M. Rajaonarivony, J. Gershenzon, and R. Croteau. 1992 Purification of 4S-limonene synthase, a monoterpene cyclase from the glandular trichomes of peppermint (Mentha ×piperita) and spearmint (M. spicata). J. Biol. Chem. 267:7582-7587. 44. Aparicio, P.J., J.M. Rolddn, and F. Calero. 1976. Blue light photoreactivation of nitrate reductase from green algae and higher plants. Biochem. Biophys. Res. Commun. 70:1071-1077. 45. Areias, F.M., P. Valentao, P.B. Andrade, F. Ferreres, and R.M. Seabra. 2001. Phenolic fingerprint of peppermint leaves. Food Chem. 73:307-311. 46. Arceusz, A., I. Radecka, and M. Wesolowski. 2010. Identification of diversity in elements content in medicinal plants belonging to different plant families. Food Chem. 120:52-58. 47. Aslam, M., R.L. Travis, and D.W. Rains. 2001. Different effect of amino acids on nitrate uptake and reduction systems in barley roots. Plant Sci. 160:219-228. 48. Assreuy, A.M., D.N. Criddle, S.R. Fontenele, R.F. Lima, T.O. Silva, P.M. Soares, and E.P. Souza. 2005. Inhibitory effects of the essential oil of Mentha pulegium on the isolated rat myometrium. Plant Med. 71:214-218. 49. Astaneh, S.A., L. Gachkar, I. Rasooli, M.B. Rezaei, M. Taghizadeh, and D. Yadegarinia. 2006. Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochemistry 67:1249-1255. 50. Atta, A.H. and K.A. EL-Sooud. 2004. The antinociceptive effect of some Egyptian medicinal plant extracts. J. Ethnopharmacol. 95:235-238. 51. Aydin, I. 2008. Comparison of dry, wet and microwave digestion procedures for the determination of chemical elements in wool samples in Turkey using ICP-OES technique. Microchem. J. 90:82-87. 52. Ban, D., S. Goreta, and J. Borosic. 2006. Plant spacing and cultivar affect melon the growth and yield components. Scientia Hort. 109:238-243. 53. Blom-Zandstra, M. and J.E.M. Lampe. 1985. The role of nitrate in the osmoregulation of lettuce (Lacluca saliva L.) grown at different light intensities. J. Exp. Bot. 36:1043-1052. 54. Boroujerdnia, M. and N.A. Ansari. 2007. Effect of different levels of nitrogen fertilizer and cultivars on the growth, yield and yield components of romaine lettuce (Lactuca sativa L.). Middle Eastern and Russian J. Plant Sci. Biotechnol. 1:47-53. 55. Bres, W. and L.A. Weston. 1992. Nutrient accumulation and tip-burn in NFT-grown lettuce at several potassium and pH levels. HortScience 27:790-792. 56. Bruggink, G.T. and E. Heuvelink. 1987. Influence of light on the growth characteristics of young tomato, cucumber and sweet pepper plants in the greenhouse: effects on relative frowth rate, net assimilation rate and leaf area ratio. Scientia Hort. 31:161-174. 57. Burbott, A.J. and W.D. Loomis. 1967. Effects of light and temperature on the monoterpenes of peppermint. Plant Physiol. 42:20-28. 58. Burke, C.C., M.R. Wildung, and R. Croteau. 1999. Geranyl diphosphate synthase: cloning expression and characterization of this prenyltransferase as a heterodimer. Natl. Acad. Sci. USA 96:13062-13067. 59. Buwaldal, F. and M. Warmenhoven. 1999. Growth-limiting phosphate nutrition suppresses nitrate accumulation in greenhouse lettuce. J. Exp. Bot. 50:813-821. 60. Camacho-Cristobal, J.J. and A. Gonzalez-Fontes. 1999. Boron deficiency causes a drastic decrease in nitrate content and nitrate reductase activity, and increases the content of carbohydrates in leaves from tobacco plants. Planta 209:528-536. 61. Cantliffe, D.J., G.E. MacDonald, and N.H. Peck. 1974. Reduction in nitrate accumulation by molybdenum in spinach grown at low pH. Commun. Soil Sci. Plant Anal. 5:273-282. 62. Carrasco, G. and S.W. Burrage. 1993. Diurnal fluctuations in nitrate uptake and nitrate accumulation in lettuce (Lactuca sativa L.) grown using nutrient film technique. Acta Hort. 339:137-147. 63. Carrasco, S., S.W. Burrage, and D. Kazakidou. 1994. Nitrate accumulation in red chicory (Cichorium intybus L.) grown at a low level of light intensity. Acta Hort. 361:274-281. 64. Cataldo, D.A., M. Haroon, L.E. Schrader, and V.L. Youngs. 1975. Rapid colorimetric of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 6:71-80. 65. Chander, R., S.R. Kanatt, and A. Sharma. 2007. Antioxidant potential of mint (Mentha spicata L.) in radiation-processed lamb meat. Food Chem. 100:451-458. 66. Chen, B., Z. Wang, S. Li, and G. Wang. 2004. Effect of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci. 167:635-643. 67. Chung, J.B., S.G. Park, and S. Park. 2001. Suppression of nitrate accumulation in lettuce by application of Mg and micronutrients. Korean J. Environ. Agr. 20:340-345. 68. Clark, R.J. and R.C. Menary. 1979. The importance of harvest data and plant density on the yield and quality of Tasmanian peppermint oil. J. Am. Soc. Hort. Sci. 104:702-706. 69. Clark, R.J. and R.C. Menary. 1980. Environmental effects on peppermint (Mentha piperita L.). I. Effect of daylength, photon flux density, night temperature and day temperature on the yield and composition of peppermint oil. Aust. J. Plant Physiol. 7:685-692. 70. Clark, R.J. and R.C. Menary. 1984. The effect of two harvest per year on the yield and composition of Tasmanian peppermint oil (Mentha piperita L.). J. Sci. Food Agr. 35:1191-1195. 71. Coelho, M.G.P., A.P.R. Gadelha, C.S. Lopes, L.H. Monteiro-Leal, F. Vidal, and J.C. Vidal. 2007. Giardia lamblia: The effects of extracts and fractions from Mentha × piperita Lin. (Lamiaceae) on trophozoites. Expt. Parasitol. 115:25-31. 72. Conesa, E., D. Ninirola, M.J. Vicente, J. Ochoa, S. Banon, and J.A. Fernandez. 2009. The influence of nitrate/ammonium ratio on yield quality and nitrate, oxalate and vitamin C content of baby leaf spinach and bladder campion plants grown in a floating system. Acta Hort. 843:269-273. 73. Court, W.A., R.C. Roy, and R. Pocks. 1993. Effect of harvest date on the yield and quality of the essential oil of peppermint. Can. J. Plant Sci. 73:815-824. 74. Crawford, N.M. 1995. Nitrate: nutrient and signal for plant growth. Plant Cell 7:859-868. 75. Croteau, R., A.J. Burbott, and W.D. Loomis. 1972. Biosynthesis of mono and sesquiterpenes in peppermints from glucose 14C and 14CO2. Phytochemistry 11:2459-2467. 76. Cumbus, I.P. and P.H. Nye. 1982. Root zone temperature effects on the growth and nitrate absorption in rape (Brassica napus cv. Emerald) J. Expt. Bot. 33:1138-1146. 77. Das, U.S.R. and P.V. Raju. 1965. Photosynthetic 14CO2 assimilation by rice leaves under the influence of blue light. Indian J. Plant Physiol. 8:1-4. 78. Davies, S.J., L.M. Harding, and A.P. Baranowski. 2002. A novel treatment of postherpetic neuralgia using peppermint oil. Clin. J. Pain 18:200-202. 79. Delhon, P., A. Gojon, P. Tillard, and L. Passama. 1995. Diurnal regulation of NO3- uptake in soybean plants. Changes in NO3- influx, efflux, and N utilization in the plant during the day/night cycle. J. Expt. Bot. 46:1585-1594. 80. Economakis, C.D. 1990. Effect of solution conductivity on the growth and yield of lettuce in nutrient film culture. Acta Hort. 287:309-316. 81. Emanuel, E. and J.B. Arnold. 1972. Mineral nutrition of plants: principles and perspectives. Sinauer Associates, New York. 82. European Community. 2011. European Commission Regulation. No. 466/2001. Offic. J. Eur. Communities L 77/6. 83. Fahlen, A., M. Welander, and R. Wennersten. 1999. Effects of light-temperature regimes on plant growth and essential oil yield of selected aromatic plants. J. Sci. Food Agr. 73:111-119. 84. Frank, M.M. and E.J. Bakx. 1997. Growth and flower development in roses as affected by light. Acta Hort. 418:127-134. 85. Galeotti, N., L.D.C. Mannelli, and G. Mazzanti. 2002. Menthol: a natural analgesic compound. Neurosci. Lett. 322:145-148. 86. Gobert, V., S. Moja, M. Colson, and P. Taberlet. 2002. Hybridization in the section Mentha (Lamiaceae) inferred from AFLP markers. Amer. J. Bot. 89:2017-2023. 87. Gonnella, M. and F. Serio. 2003 Yield and quality of lettuce grown in floating system using different sowing density and plant spatial arrangements. Acta Hort. 614:687-692. 88. Gonzalez-Garcia, J.L., M.N. Rodriguez-Mendoza, P. Sanchez-Garcia, B. Osorio-Rosales, L.I. Trejo-Tellez, G. Alcantar-Gonzalez, and M. Sandoval-Villa. 2009. Ammonium/nitrate ratios in hydroponic production of aromatic herbs. Acta Hort. 843:123-128. 89. Goto, E., A.J. Both, L.D. Albright, R.W. Langhans, and A.R. Leed. 1996. Effect of dissolved oxygen concentration on lettuce growth in floating hydroponics. Acta Hort. 440:205-210. 90. Grahle, A. and C. Hoeltzel. 1963. Photoperiode Abhangigkeit und Bedeutung fur des atherischen Ol bei Mentha piperita L. Naturwisessenschaften 50:552. 91. Green, B.G. and B.L. McAuliffe. 2000. Menthol desensitization of capsaicin irritation: Evidence of a short-term anti-nociceptive effect. Physiol. Behav. 68:631-639. 92. Grigoleit, H.G. and P. Grigoleit. 2005. Pharmacology and preclinical pharmacokinetics of peppermint oil. Phytomedicine 12:612-616. 93. Gulluce, M., F. Sahin, M. Sokmen, H. Ozer, D. Daferera, A. Sokmen, M. Polissiou, A. Adiguzel, and H. Ozkan. 2007. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chem. 103:1449-1456. 94. Hall, A.C., C.M. Turcotte, B.A. Betts, W. Yeung, A.S. Agyeman, and L. Burk. 2004. Modulation of human GABAA and glycine receptor currents by menthol and related monoterpenoids. Eur. J. Pharmacol. 50:9-16. 95. Harkenthal, M., J. Reichling, H.K. Geiss, and R. Saller. 1999. Comparative study on the in vitro antibacterial activity of Australian tea tree oil, cajuput oil, niaouli oil, manuka oil, kanuka oil, and eucalyptus oil. Pharmazie 54:460-463. 96. Harley, R.M. 1975. Mentha L., p. 383-390. In: C.A. Stace (eds.). Hybridization the flora of the British Isles. Academic Press, London. 97. Hawthorn, M., J. Ferrante, and E. Luchowski. 1988. Menthol and peppermint oil action on calcium channel dependent processes in cardiac, intestinal and neuronal preparations. Aliment Pharmacol. Ther. 2:101-118. 98. Hay, R.K. and P.G. Waterman. 1993. Volatile oil crops: their biology, biochemistry and production. Longman Scientific & Technical, New York. 99. Hernandez, L.E., A.M. Ramon, R.O. Carpena-Ruiz, and A. Garate. 1995. Evaluation of nitrate nutrition indexes in maize leaves: metabolic nitrate, total nitrate content and nitrate reductase activity. J. Plant Nutri. 18:869-887. 100. Heuvelink, E. 1995. Effect of plant density on biomass allocation to the fruits in tomato (Lycopersicon esculentum Mill.). Scientia Hort. 64:193-201. 101. Hills, J.M. and P.I. Aaronson. 1991. The mechanism of action of peppermint oil on gastro intestinal smooth muscle. An analysis using patch clamp electrophysiology and isolated tissue pharmacology in rabbit and guinea pig. Gastroenterology 101:55-65. 102. Huang, T.C., T.H. Shieh, and W.T. Cheng. 1994. Flora of Taiwan, IV, p. 485-488. In: Labiatae (eds.). Editorial committee of the flora of Taiwan. Editorial Committee of the Flora of Taiwan, Taipei. 103. Islam, M., S. Matsui, and S. Ichihashi. 1999. Effects of light quality on seed germination and seedling growth of Cattleya orchids in vitro. J. Japan Soc. Hort. Sci. 68:1132-1138. 104. Justesen, U. and P. Knuthsen. 2001. Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish. Food Chem. 73:245-250. 105. Kara, D. 2009. Evaluation of trace metal concentrations in some herbs and herbal teas by principal component analysis. Food Chem. 114:347-354. 106. Kasai, R., K. Ohtani, K. Ozawa, K. Yamasaki, and S. Yamasaki. 1997. Antihistaminic flavones and aliphatic glycosides from Mentha spicata. Phytochemistry 48:131-136. 107. Kashiwada, Y., T. Nagao, A. Hashimoto, Y. Ikeshiro, H. Okabe, L.M. Cosentino, and K.-H. Lee. 2000. Anti-AIDS agents 38. Anti-HIV activity of 3-O-acyl ursolic acid derivatives. J. Nat. Prod. 63:1619-1622. 108. Kim, K., J. Lee, H. Park, J. Kim, C. Kim, I. Shim, N. Kim, S. Han, and S. Lim. 2004. Inhibition of cytochrome P450 activities by oleanolic acid and ursolic acid in human liver microsomes. Life Sci. 74:2769-2779. 109. King, B.J., M.Y. Siddiqi, and A.D.M. Glass. 1992. Studies of the uptake of nitrate in barley. V. Estimation of root cytoplasmic nitrate concentration using nitrate reductase activity-implications for nitrate influx. Plant Physiol. 99:1582-1589. 110. Kjonaas, R. and R. Croteau. 1983. Demonstration that limonene is the first cyclic intermediate in the biosynthesis of oxygenated p-menthane monoterpenes in Mentha piperita and other Mentha species. Arch. Biochem. Biophys. 220:79-89. 111. Kulaeva, O.N. 1982. Hormonal regulation of physiological processes in plants on the level of RNA and protein synthesis. Timiryazev Lectures, 41st, Nauka, Moscow. Russian. 112. Laine, P., J. Bigot, A. Ourry, and J. Boucaud. 1994. Effects of low temperature on nitrate uptake, and xylem and phloem flows of nitrogen, in Secale cereale L. and Brassica napus L. New Phytol. 127:675-683. 113. Landsburg, C. 1999. Quality evaluation of essential oil from Nova Scotia grown mint. Nova Scotia Agricultural College, Truro Nova Scotia. Master Sc. 612-57302. 114. Lawrence, B.M. and C.K. Shu. 1989. Peppermint oil differentiation. Perfumer Flavorist. 14:21-30. 115. Lawrence, B.M. 2007a. The composition of commercially important mints, p. 217-323. In: B.M. Lawrence (eds.). Mint, the genus Mentha. CRC Press, New York. 116. Lawrence, B.M. 2007b. Oil composition of other Mentha species and hybrids, p. 325-346. In: B.M. Lawrence (eds.). Mint, the genus Mentha. CRC Press, New York. 117. Lichtenthaler, H.K. 1987. Chlorophyll and carotenoids pigments of photosynthetic biomembranes. Methods Enzymol. 148:350-382. 118. Lillo, C. 1994. Light regulation of nitrate reductase in green leaves of higher plants. Plant Physiol. 90:616-620. 119. Logendra, S., J.D. Putman, and H.W. Janes. 1990. The influence of light period on carbon partitioning, translocation and growth in tomato. Scientia Hort. 42:75-83. 120. Ma, C., N. Nakamura, M. Hattori, H. Kakuda, J.c. Qiao, and H.l. Yu. 2000. Inhibitory effects on HIV-1 protease of constituents from the wood of Xanthoceras sorbifolia. J. Nat. Prod. 63:238-242. 121. Madyastha, K.M., P. Madyastha, and B.M. Vaidyanathan. 1985. In vivo and in vitro destruction of rat liver cytochrome P-450 by a monoterpene ketone, pulegone. Biochem. Biophys. Res. Commun. 128:921-927. 122. Madyastha, K.M. and C.P. Raj. 1994. Effects of menthofuran, a monoterpene furan on rat liver microsomal enzymes, in vivo. Toxicology 89:119-125. 123. Madyastha, K.M. and C.P. Raj. 1993. Studies on the metabolism of a monoterpene ketone, R-(+)-pulegone-A hepatotoxin in rat: Isolation and characterization of new metabolites. Xenobiotica 23:509-518. 124. Maffei, M., M. Mucciarelli, and S. Scannerini. 1994. Are leaf area index (LAI) and flowering related to oil productivity in peppermint. Flavour Frag. J. 9:119-124. 125. McCree, K.J. 1971. Significance of enhancement for calculations based on action spectrum for photosynthesis. Plant Physiol. 49:704-706. 126. McConkey, M., J. Gershenzon, and R. Croteau. 2000. Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint (Mentha ×piperita L.). Plant Physiol. 122:215-223. 127. McGarvey, D.J. and R. Croteau. 1995. Terpenoid metabolism. Plant Cell 7:1015-1026. 128. Mendlinger, S. 1994. Effect of increasing plant density and salinity on yield and fruit quality in muskmelon. Scientia Hort. 57:41-49. 129. Miceli, A., A. Moncada, F. Vetrano, and F.D. Anna. 2003. First results on yield and quality response of basil (Ocimum basilicum L.) grown in a floating system. Acta Hort. 609:377-381. 130. Miller, A.J. and S.J. Smith. 1992. The mechanism of nitrate transport across the tonoplast of barley root cells. Planta 187:554-557. 131. Mitchell, A.R. and N.A. Farris. 1996 Peppermint response to nitrogen fertilizer in an arid climate. J. Plant Nutr. 19:955-967. 132. Moe, R. and R.D. Heins. 1990. Control of plant morphogenesis and flowering by light quality and temperature. Acta Hort. 272:81-90. 133. Morarda, P., J. Silvestrea, L. Lacostea, E. Caumesa, and T. Lamazeb. 2004. Nitrate uptake and nitrite release by tomato roots in response to anoxia. J. Plant Physiol. 161:855-865. 134. Murray, M.J. and D.E. Lincoln. 1972. Oil composition of Mentha aquatic – M. longifolia F1 hybrids and M. dumetorum. Euphytica 21:337-343. 135. Murage, E.N., N. Watashiro, and M. Masuda. 1997. Influence of light quality, PPFD and temperature on leaf chlorosis of eggplants grown under continuous illumination. Scientia Hort. 68:73-82. 136. Murray, M.J., P. Marble, D. Lincoln, and F.W. Hefendehl. 1988. Peppermint oil quality differences and the reasons for them, p. 189-208. In: B.M. Lawrence, B.D. Mookherjee and B.J. Willis (eds.). Flavors and fragrances: A world perspective. Elsevier, Washington, DC, USA. 137. Nelson, C.E., M.A. Mortensen, and R.E. Erly. 1971. Evaporative cooling of peppermint by sprinkling. Washington Agricultural Experiment Station 539. 138. Nishimura, T., K. Ohyama, E. Goto, and N. Inagaki. 2009. Concentrations of perillaldehyde, limonene, and anthocyanin of Perilla plants as affected by light quality under controlled environments. Scientia Hort. 122:134-137. 139. Ohashi-Kaneko, K., M. Takase, N. Kon, K. Fujiwara, and K. Kurata. 2007. Effect of light quality on the growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ. Control Biol. 45:189-198. 140. Papadopoulos, A.P. and S. Pararajasingham. 1997. The influence of plant spacing on light interception and use in greenhouse tomato (Lycopersicon esculentum Mill.) : A review. Scientia Hort. 69:l-29. 141. Pettersen, R.I., S. Torre, and H.R. Gislerod. 2010. Effects of leaf aging and light duration on photosynthetic characteristics in a cucumber canopy. Scientia Hort. 125:82-87. 142. Proietti, S., S. Moscatello, F. Famiani, and A. Battistelli. 2009. Increase of ascorbic acid content and nutritional quality in spinach leaves during physiological acclimation to low temperature. Plant Physiol. Biochem. 47:717-723. 143. Qi, S., L. Ding, K. Tian, X. Chen, and Z. Hu. 2006. Novel and simple nonaqueous capillary electrophoresis separation and determination bioactive triterpenes in Chinese herbs. J. Pharmaceut. Biomed. Anal. 40:35-41. 144. Queralt, I., M. Ovejero, M.L. Carvalho, A.F. Marques, and J.M. Llabr. 2005. Quantitative determination of essential and trace element content of medicinal plants and their infusions by XRF and ICP techniques. X-Ray Spectrom. 34:213-217. 145. Riens, B. and H.W. Heldt. 1992. Decrease of nitrate reductase activity in spinach leaves during a light-dark transition1. Plant Physiol. 98:573-577. 146. Robert, M.K., J.K. Jeffrey, and J.D. Palma. 2001. Barbero enteric-coated, pH-dependent peppermint oil capsules for the treatment of irritable bowel syndrome in children. J. Pediatr. 138:125-128. 147. Rohloff, J., E.B. Skagen, A.H. Steen, T. Beisvag, and T.H. Iversen. 2000. Essential oil composition of Norwegian peppermint (Mentha ×piperita L.) and sachalinmint [Mentha sachalinensis (Briq.) Kudo]. Act. Agr. Scand. Sect. B. 50:161-168. 148. Russo, V.M. 1991. Effects of fertilizer rate, application timing and plant spacing on yield and nutrient content of bell pepper. J. Plant Nutr. 14:1047-1056. 149. Santamaria, P., A. Elia, and F. Serio. 2002. Effect of solution nitrogen concentration on yield, leaf element content, and water and nitrogen use efficiency of three hydroponically-grown rocket salad genotypes. J. Plant Nutr. 25:245-258. 150. Schelz, Z., J. Molnar, and J. Hohmann. 2006. Antimicrobial and antiplasmid activities of essential oils. Fitoterapia 77:279-285. 151. Schuhmacher, A., J. Reichling, and P. Schnitzler. 2003. Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phytomedicine 10:504-510. 152. Seo, M.W., D.S. Yang, S.J. Kays, J.H. Kim, J.H. Wood, and K.W. Park. 2009. Effects of nutrient solution electrical conductivity and sulfur, magnesium, and phosphorus concentration on sesquiterpene lactones in hydroponically grown lettuce (Lactuca sativa L.). Scientia Hort. 122:369-374. 153. Serio, F., A.E.P. Santamaria, G.R. Rodriguez, G. Conversa, and V.V. Bianco. 2001. Lettuce growth, yield and nitrate content as affected by electrical conductivity of nutrient solution. Acta Hort. 559:563-568. 154. Sohn, K.H., H.Y. Lee, H.Y. Chung, H.S. Young, S.Y. Yi, and K.W. Kim. 1995. Anti-angiogenic activity of triterpene acids. Cancer Letters 94: 213-218. 155. Steingrover, E. 1986. Nitrate accumulation in spinach: uptake and reduction of nitrate during a dark or a low light night period. Plant Soil 91:429-432. 156. Sutour, S., P. Bradesi, D. de Rocca-Serra, J. Casanova, and F. Tomi.2008. Chemical composition and antibacterial activity of the essential oil from Mentha suaveolens ssp. insularis (Req.) Greuter. Flavour Fragr. J. 23:107-114. 157. Taiz, L. and E. Zeiger. 2010. Plant physiology. 5th ed. Sinauer Associate, Sunderland, MA, USA. 158. Terada, M. 1987. Differential rapid analysis of ascorbic acid and ascorbic acid-2-sulfate by dinitrophenyl-hydrazine method. Anal. Biochem. 84:604-608. 159. The World Health Organization. 1996. Toxicological evaluation of certain food additives and contaminants (Prepared by the Joint FAO/WHO Expert Committee on Food Additives, JECFA.). WHO Food Additives Series No. 35. Geneva. World Health Organization. 160. Tucker, A.O. and H.L. Cambers. 2002. Mentha canadensis L. (Lamiaceae): a relict amphidiploid from the lower tertiary. Taxon 51:703–718. 161. Tucker, A.O. and D.E. Fairbrothers. 1990. The origin of Mentha ×gracilis (Lamiaceae). I. Chromosome numbers, fertility, and three morphological characters. Econ. Bot. 44:183-213. 162. Tucker, A.O., H. Hendriks, R. Bos, and D.E. Fairbrothers. 1991. The origin of Mentha ×gracilis (Lamiaceae). II. Essential oils. Econ. Bot. 45:200-215. 163. Tucker, U. and R.F.C. Naczi. 2007. Mentha: An overview of its classification and relationships, p. 1-39. In: B.M. Lawrence (eds.). Mint, the genus Mentha. CRC Press, New York. 164. Vimolmangkang, S., W. Sitthithaworn, D. Vannavanich, S. Keattikunpairoj, and C. Chittasupho. 2010. Productivity and quality of volatile oil extracted from Mentha spicata and M. arvensis var. piperascens grown by a hydroponic system using the deep flow technique. J. Nat. Med. 64:31-35. 165. Voirin, B., N. Brun, and C. Bayet. 1990. Effects of day length on the monoterpene composition of leaves of Mentha piperita. Phytochemistry 29:749-755. 166. Wang, H., M. Gu, J. Cui, K. Shi, Y. Zhou, and J. Yu. 2009. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J. Photochem. Photobio. B. 96:30-37. 167. Wang, Z. and S. Li. 2004. Effects of nitrogen and phosphorus fertilization on plant growth and nitrate accumulation in vegetables. J. Plant Nutr. 27:539-556. 168. Wilcox, G.E., J.R. Magalhaesl, and F.L.I.M. Silval. 1985. Ammonium and nitrate concentration as factors in tomato growth and nutrient uptake. J. Plant Nutr. 8:989-998. 169. Williams, L.E. and A.J. Miller. 2001. Transporters responsible for the uptake and partitioning of nitrogenous solutes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:659-688. 170. Wu, M. and C. Kubota. 2008. Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Scientia Hort. 116:122-129. 171. Yin, Y.X. 1993. An investigation of nitrate content of vegetables in Yin Chuan and of methods of contamination evaluation and prevention. Ningxia J. Soc. Exp. Biol. 42:20-60. 172. Yu, F., A.M.K. Thamm, D. Reed, N. Villa-Ruano, A.L. Quesada, E.L. Gloria, P. Covello, and V.D. Luca. 2012. Functional characterization of amyrin synthase involved in ursolic acid biosynthesis in Catharanthus roseus leaf epidermis. Phytochemistry article in press. 173. Zhang, G., Y. Qi, Z. Lou, C. Liu, X. Wu, and Y. Chai. 2005. Determination of oleanolic acid and ursolic acid in cornel by cyclodextrin-modified micellar electrokinetic chromatography. Biomed. Chromatogr. 19:529-532. 174. Zheljazkov, V.D., C.L. Cantrell, T. Astatkie, and M.W. Ebelhar. 2010. Peppermint productivity and oil composition as a function of nitrogen, growth stage, and harvest time. Agr. J. 102:124-128. 175. Zheljazkova, V. and V. Topalov. 1997. Effect of planting time and density on yields from rooted mint cuttings. J. Herbs Spices Med. Plants 4:15-24. 176. Zheng, Y., L. Wang, and M. Dixon. 2007. An upper limit for elevated root zone dissolved oxygen concentration for tomato. Scientia Hort. 113:162-165. 177. Zheng, W. and S.Y. Wang. 2001. Antioxidant activity and phenolic compounds in selected herbs. J Agr. Food Chem. 49:5165-5170. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63835 | - |
dc.description.abstract | 薄荷(Mentha spp., Mint)泛指唇形科(Lamiaceae)薄荷屬之草本植物,為天然香料與精油的重要原料之一。作物露天栽培受限於可耕地之面積、土壤特性及氣候變化,植物工廠水耕栽培或可解決部份問題。蔬菜硝酸鹽含量關乎食用安全,其受肥培管理及環境因子之影響。本研究探討水耕栽培荷蘭薄荷(Mentha spicata)及澳洲薄荷(Mentha australis)之適當養液配方、栽培密度、光質、溫度及降低硝酸鹽含量的方法,期能於植物工廠穩定量產清潔、硝酸鹽含量低於2000 ppm之兩種薄荷。2011年7月4日至7月26日(期間溫度27.0~28.8℃),在國立臺灣大學農業試驗場園藝分場溫室內分別種植兩種薄荷,栽培密度為每箱(43×36 cm2) 12株,施用山崎、臺中農業改良場家庭葉菜、Hoagland及Thailand養液,採收前三天將養液換為清水,四種養液之單株葉鮮重間皆無差異(荷蘭薄荷與澳洲薄荷分別為5.03~6.02及6.38~7.83 g,以下數據同此順序);荷蘭薄荷葉片10種元素含量皆在適宜範圍內,但澳洲薄荷以臺中農改場家庭葉菜養液栽培之葉片鉬含量僅0.15μm•g-1 DW,並表現病徵;而Hoagland養液栽培之葉片硝酸鹽含量最低(741及906 ppm),且生物活性成分齊墩果酸含量較高。繼於2011年8月11日至9月1日(26.8~28.3℃)分別種植兩種薄荷,以Hoagland養液栽培並於採收前三天換為清水者,其單株葉鮮重未下降(6.87g及6.13 g),且葉片硝酸鹽含量顯著較低(506及1434 ppm)、Zn含量較高;但以山崎養液栽培者,採收前三天換清水顯著降低單株葉鮮重。故於2011年9月15至10月6日(24.5~27.8℃)以Hoagland養液定植兩種薄荷,採收前一天換清水顯著降低葉片硝酸鹽含量(1680及1990 ppm),且單株葉鮮重(4.81 g及4.50 g)與採收前二、三天及未換清水者無差異,亦不影響澳洲薄荷葉片10種元素含量。2011年10月5日至11月17日(21.0~24.2℃)在園藝分場溫室分別種植兩種薄荷,每週連續採收共收四次,每次採收之莖葉立即照光2、3及4小時皆不影響葉片10種元素、有效成分齊墩果酸及熊果酸之含量,但其降低葉片硝酸鹽含量之效果皆不及採收前一天換清水。2011年11月24至12月15日(16.5~22.5℃)於園藝分場溫室分別種植兩種薄荷,每箱種18與12株之單株葉鮮重皆比6株者顯著較低,但種植18株之單位面積總產量(324.81及376.07 g/m2)顯著較高;而栽培密度對硝酸鹽含量並無影響。故以每栽培箱種植18株進行下列試驗。2012年3月9日至3月29日在臺大人工氣候室分別種植兩種薄荷,於五種日夜溫35/30℃、30/25℃、25/20℃、20/15℃及15/13℃栽培,在25/20℃下生長之單株葉鮮重顯著較高(5.67 g及7.03 g)、硝酸鹽含量顯著較低(538及572 ppm),且荷蘭薄荷之齊墩果酸含量與澳洲薄荷之熊果酸含量亦較高。另於人候室之LED植物栽培室26℃與16/8 hr光週下,以八種不同光質及光強度分別栽培兩種薄荷,其中以115 μmol•m-2s-1之混和紅藍綠發光二極體為光源者,其單株葉鮮重(4.37 g及7.02 g)、分枝數、葉片數、根長與根乾重皆較高,且硝酸鹽含量較低(2499及4223 ppm)。於臺大完全控制型植物工廠25/20℃、但高相對濕度RH 95%逆境下,以100 μmol•m-2s-1之六種不同光質比例的發光二極體栽培兩種薄荷,以7R2B為光源者其單株葉鮮重顯著較高(1.75 g及1.82 g),硝酸鹽含量(1776及2257 ppm)顯著較低;澳洲薄荷之齊墩果酸及熊果酸含量亦較高。2012年2月6日至3月19日(16.0~25.2℃)在太陽光型植物工廠、及於22/20℃以300 μmol•m-2s-1 T5燈為光源之完全控制型植物工廠內,分別種植兩種薄荷。於完全控制型植物工廠連續4週採收之單株總產量(10.96及15.86 g)皆高於太陽光型者(8.73及8.52 g),硝酸鹽含量亦低於2000 ppm。於兩型植物工廠栽培荷蘭薄荷之葉片Mo含量、齊墩果酸與精油中檸檬烯含量,皆較唐山園藝及city’super所售者高,香芹酮含量較低,而葉片K、P、Mg、Zn及Cu含量亦較唐山園藝所售者高;兩型植物工廠栽培澳洲薄荷之葉片Ca、K、P、齊墩果酸、熊果酸與精油中檸檬烯及香芹酮含量皆較唐山園藝所售者高。故在完全控制型植物工廠於日夜溫25/20℃、300 μmol•m-2s-1 T5燈為光源,或於20~25℃季節在太陽光型植物工廠,採用Hoagland養液,並於採收前一天換清水,可每週穩定量產清潔、低硝酸鹽含量之荷蘭薄荷及澳洲薄荷。 | zh_TW |
dc.description.abstract | Mints (Mentha spp.) were generally referred to the herbs in the Mentha of Lamiaceae. Mint is one of the important raw materials of natural aromatizer and the essential oil. Field production of crops is limited by the area and soil properties of the arable land and climate change. Hydroponics in the plant factory may solve part of this problem. The nitrate content of leafy vegetable is related to the food safety and affected by nitrogen fertilizer and environments. This research aimed to study the appropriate nutrient solution, planting density, light quality, temperature and nitrate content reducing method of hydroponically grown Mentha spicata and M. australis in order to stably mass-produce clean mint with nitrate content less than 2000 ppm in the plant factory. Two mints were grown hydroponically with 12 plants in one container (43 × 36 cm2) in the greenhouse of The Experimental Farm, College of Bioresourcces and Agricculture, National Taiwan University during July 4 through July 26, 2011 (27.0~28.8℃). Nutrient solutions of Yamazaki, Taichung District Agricultural Research and Extension Station (TDARES) for leafy vegetables, Hoagland and Thailand were applied. For leaf fresh weight (F.W.) per plant, non-significant difference existed among four nutrient solutions by water replacement on 3 days before harvest (Mentha spicata and M. australis were 5.03~6.02 and 6.38~7.83 g, respectively. The following data were shown with by order). Contents of ten elements in leaves of M. spicata were in the appropriate range. But leaf Mo content was only 0.15 μm•g-1 DW and symptoms shown in leaves of M. australis grown with TDARES leafy vegetable solution. The lowest nitrate content (741 and 906 ppm) and the highest bioactive ingredients of oleanolic acid contents were exhibited when two mints were applied with Hoagland nutrient solution. During August 11 to September 1, 2011 (26.8~28.3℃), water replacement of Hoagland nutrient solution on 3 days before harvest did not reduce leaf F.W. per plant (6.87g and 6.13 g) of two mints, and the leaf nitrate content was also significant lower (506 and 1434 ppm) andbZn content higher. But leaf F.W. per plant was reduced by water replacement on 3 days before harvest with Yamazaki nutrient solution. During September 15 through October 6, 2011 (24.5~27.8℃), two mints were grown with Hoagland nutrient solution. Water replacement on 1 day before harvest significantly lower nitrate content (1680 and 1990 ppm). Concerning leaf F.W. per plant (4.81 g and 4.50 g), non-significant difference was showed among water replacement on 1, 2, and 3 days before harvest and no replacement. Non-significant difference on contents of 10 elements existed among four treatments in leaves of M. australis. Two mints were grown in the greenhouse during October 5 through November 17, 2011 (21.0~24.2℃), and weekly-heavested for four times. Harvested shoots were immediately illuminated for 2, 3 and 4 hours. No singnificant effect on contents of 10 elements, oleanolic acid and ursolic acid in leaves of two mints. But reducing effects on nitrate content by illumination were less than water replacement. During November 24 through December 15, 2011 (16.5~22.5℃), the leaf F.W. per plant with 18 or 12 plants per container were lower than 6 plants, but density of 18 plants were showed significantly higher yield (324.81 and 376.07 g/m2) in the greenhouse. Planting density did not affect the leaf nitrate content. Therefore, 18 plants per container were applied in the following experiments. Two mints were grown under day/night temperature 35/30℃, 30/25℃, 25/20℃, 20/15℃ and 15/13℃ in the Phytotron of NTU from March 9 through March 29, 2012. At 25/20°C, higher leaf F.W. per plant (5.67 g and 7.03 g), lower nitrate content (538 and 572 ppm), higher oleanolic acid contents in M. spicata and higher ursolic acid contents in M. australis were showed. Two mints were then grown with eight trratments of different light quality and intensity under 26℃ and 16/8 hr photoperiod. Significantly higher leaf F.W. per plant (4.37 g and 7.02 g), branch number, leaf number, root length and root dry weight, but significantly lower nitrate content were exhibited in two mints grown with red, blue and green light-emitting diode (LED) of 115 μmol•m-2s-1light intensity. Under 95% relative humidity stress at 25/20℃, two mints were grown with six kind of LED with mixed light quality and 100 μmolm-2s-1 light intensity in the closed type plant factory of NTU. Significantly higher leaf F.W. per plant (1.75 g and 1.82 g), and significantly lower nitrate content (1775.93 ppm and 2256.60 ppm) were shown in 7R2B LED treatment in two mints, and significant higher oleanolic acid and ursolic acid contents in M. australis. Two mints were cuttivated in semi-closed type plant factory and closed type plant factory with 300 μmolm-2s-1 light intensity and T5 lamp at 22/20℃ during February 6 through March 19, 2012 (16.0~25.2℃). Continuous weekly harvest for four times in closed type plant factory showed higher yield per plant (10.96 g and 15.86 g) with nitrate content lower than 2,000 ppm than in the semi-closed type plant factory. M. spicata grown in two types of plant factory showed higher contents of Mo, and oleanolic acid in leaf and limonene in essential oil than commercial products of ‘Tangshan’ and ‘city'super’; but lower carvone content in essential oil, higher leaf K, P, Mg, Zn and Cu contents than in ‘Tangshan’ product. M. australis grown in two types of plant factory showed higher contents of Ca, K, P, oleanolic acid, ursolic acidin leaf, and limonene and carvon in eessential oils than ‘Tangshan’ products. Therefore, in closed type plant factory with 25/20℃ and 300 μmolm-2s-1 of T5 lamp, or in semi-closed type plant factory in seasons of 20~25℃, producing clean M. spicata and M. australis with nitrate contents lower than 2000 ppm may be achieved with application of Hoagland nutrient solution and water replacement on 1 day before harvest. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:20:24Z (GMT). No. of bitstreams: 1 ntu-101-R99628101-1.pdf: 3152163 bytes, checksum: 980f85a3a69bbc44e5a0ee41ecd688d4 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄
口試委員審定書 i 誌謝 ii 中文摘要 iii 英文摘要 v 第一章 前言 1 第二章 前人研究 一、薄荷分類、栽培與利用 3 二、水耕栽培與植物工廠 18 三、植株之氮素代謝及硝酸鹽累積 19 第三章 材料與方法 一、試驗材料、藥品及設備 29 二、試驗方法 (一) 養液配方對薄荷生育之影響 31 (二) 養液配方及採收前換清水對薄荷生育之影響 31 (三) 採收前換清水對薄荷生育之影響 32 (四) 採收後照光對薄荷生育之影響 32 (五) 栽培密度對薄荷生育之影響 33 (六) 日夜溫對薄荷生育之影響 34 (七) 光照對薄荷生育之影響 34 (八) 光質對薄荷生育之影響 35 (九) 產量試驗 36 三、調查與分析 36 四、統計分析 43 第四章 結果 一、養液配方對薄荷生育之影響 53 二、養液配方及採收前換清水對薄荷生育之影響 55 三、採收前換清水對薄荷生育之影響 58 四、採收後照光對薄荷生育之影響 60 五、栽培密度對薄荷生育之影響 62 六、日夜溫對薄荷生育之影響 63 七、光照對薄荷生育之影響 65 八、光質對薄荷生育之影響 67 九、產量試驗 68 第五章 討論 一、養液配方對薄荷生育之影響 137 二、養液配方及採收前換清水對薄荷生育之影響 142 三、採收前換清水對薄荷生育之影響 145 四、採收後照光對薄荷生育之影響 148 五、栽培密度對薄荷生育之影響 150 六、日夜溫對薄荷生育之影響 152 七、光照對薄荷生育之影響 154 八、光質對薄荷生育之影響 156 九、產量試驗 158 十、綜合討論 163 第六章 結論 165 參考文獻 167 附錄 185 圖目錄 圖1. 光照試驗使用發光二極體(LED)與T5螢光燈管之光譜圖 46 圖2. 光質試驗使用發光二極體之光譜圖(光茵公司) 47 圖3. 齊敦果酸及熊果酸檢量線之回歸方程式及決定係數 48 圖4. 添加齊敦果酸及熊果酸標準品與荷蘭薄荷及澳洲薄荷葉片之層析圖譜 49 圖5. 五種精油成分檢量線之回歸方程式及決定係數 50 圖6. 五種精油成分標準品與荷蘭薄荷及澳洲薄荷層析圖譜之對照圖 51 圖7. 荷蘭薄荷於五種日夜溫下之生長情形 104 圖8. 澳洲薄荷於五種日夜溫下之生長情形 107 圖9. 荷蘭薄荷於不同光照下生長情形 110 圖10. 澳洲薄荷於不同光照下生長情形 114 圖11. 荷蘭薄荷於不同光質下生長情形 118 圖12. 澳洲薄荷於不同光質下生長情形 121 圖13. 冬季於完全控制型與太陽光型植物工廠栽培及唐山園藝和city’super所售之荷蘭薄荷葉片 124 圖14. 冬季於完全控制型與太陽光型植物工廠栽培及唐山園藝所售之澳洲薄荷葉片 130 圖15. 種植於溫室、完全控制型及於冬季太陽光型植物工廠之荷蘭薄荷及澳洲薄荷 136 表目錄 表1. 養液配方化學組成分之含量 44 表2. 各養液配方之元素濃度 45 表3. 養液配方對荷蘭薄荷生育性狀之影響 74 表4. 養液配方對荷蘭薄荷葉片SPAD讀值、硝酸鹽濃度及葉綠素、齊墩果酸、熊果酸與總可溶性固形物含量之影響 75 表5. 養液配方對荷蘭薄荷葉片各元素含量之影響 76 表6. 養液配方對澳洲薄荷生育性狀之影響 77 表7. 養液配方對澳洲薄荷葉片SPAD讀值、硝酸鹽濃度及葉綠素、齊墩果酸、熊果酸與總可溶性固形物含量之影響 78 表8. 養液配方對澳洲薄荷葉片各元素含量之影響 79 表9. 養液配方及採收前換清水對荷蘭薄荷生育性狀之影響 80 表10. 養液配方及採收前換清水對荷蘭薄荷葉片SPAD讀值、硝酸鹽濃度及葉綠素、齊墩果酸、熊果酸與總可溶性固形物含量之影響 81 表11. 養液配方及採收前換清水對荷蘭薄荷葉片各元素含量之影響 82 表12. 養液配方及採收前換清水對澳洲薄荷生育性狀之影響 83 表13. 養液配方及採收前換清水對澳洲薄荷葉片SPAD讀值、硝酸鹽濃度及葉綠素、齊墩果酸、熊果酸與總可溶性固形物含量之影響 84 表14. 養液配方及採收前換清水對澳洲薄荷葉片各元素含量之影響 85 表15. 採收前換清水對荷蘭薄荷生育性狀之影響 86 表16. 採收前換清水對荷蘭薄荷葉片SPAD讀值、硝酸鹽濃度及葉綠素、齊墩果酸、熊果酸與總可溶性固形物含量之影響 87 表17. 採收前換清水對荷蘭薄荷葉片各元素含量之影響 88 表18. 採收前換清水對澳洲薄荷生育性狀之影響 89 表19. 採收前換清水對澳洲薄荷葉片SPAD讀值、硝酸鹽濃度及葉綠素、齊墩果酸、熊果酸與總可溶性固形物含量之影響 90 表20. 採收前換清水對澳洲薄荷葉片各元素含量之影響 91 表21. 採收後光照處理對荷蘭薄荷葉片鮮乾重之影響 92 表22. 採收後照光對荷蘭薄荷葉片SPAD讀值、硝酸鹽濃度及葉綠素、齊墩果酸、熊果酸與總可溶性固形物含量之影響 93 表23. 採收後照光對對荷蘭薄荷葉片各元素含量之影響 95 表24. 採收後照光對澳洲薄荷葉片鮮乾重之影響 96 表25. 採收後照光對澳洲薄荷葉片SPAD讀值、硝酸鹽濃度及葉綠素、齊墩果酸、熊果酸與總可溶性固形物含量之影響 97 表26. 採收後照光對對澳洲薄荷葉片各元素含量之影響 99 表27. 栽培密度處理對荷蘭薄荷生育性狀之影響 100 表28. 栽培密度處理對荷蘭薄荷葉片SPAD讀值、硝酸鹽濃度及葉綠素、齊墩果酸、熊果酸與總可溶性固形物含量之影響 101 表29. 栽培密度處理對澳洲薄荷生育性狀之影響 102 表30. 栽培密度處理對澳洲薄荷葉片SPAD讀值、硝酸鹽濃度及葉綠素、齊墩果酸、熊果酸與總可溶性固形物含量之影響 103 表31. 日夜溫對荷蘭薄荷生育性狀之影響 105 表32. 日夜溫對荷蘭薄荷葉片SPAD讀值、硝酸鹽濃度及葉綠素、齊墩果酸、熊果酸與總可溶性固形物含量之影響 106 表33. 日夜溫對澳洲薄荷生育性狀之影響 108 表34. 日夜溫對澳洲薄荷葉片SPAD讀值、硝酸鹽濃度及葉綠素、齊墩果酸、熊果酸與總可溶性固形物含量之影響 109 表35. 光照對荷蘭薄荷生育性狀之影響 111 表36. 光照對荷蘭薄荷葉片SPAD讀值、硝酸鹽濃度及葉綠素、齊墩果酸、熊果酸與總可溶性固形物含量之影響 112 表37. 光照對澳洲薄荷生育性狀之影響 115 表38. 光照對澳洲薄荷葉片SPAD讀值、硝酸鹽濃度及葉綠素、齊墩果酸、熊果酸與總可溶性固形物含量之影響 116 表39. 光質對荷蘭薄荷生育性狀之影響 119 表40. 光質對荷蘭薄荷葉片SPAD讀值、硝酸鹽濃度及葉綠素、齊墩果酸、熊果酸與總可溶性固形物含量之影響 120 表41. 光質對澳洲薄荷生育性狀之影響 122 表42. 光質對澳洲薄荷葉片SPAD讀值、硝酸鹽濃度及葉綠素、齊墩果酸、熊果酸與總可溶性固形物含量之影響 123 表43. 冬季於完全控制型與太陽光型植物工廠栽培荷蘭薄荷之生育性狀 125 表44. 於完全控制型與太陽光型植物工廠連續採收及市售荷蘭薄荷葉片之SPAD讀值、硝酸鹽濃度及葉綠素、維生素C、齊墩果酸、熊果酸與總可溶性固形物含量 126 表45. 於完全控制型與太陽光型植物工廠栽培及市售荷蘭薄荷葉片中精油所含檸檬烯及香芹酮含量 128 表46. 於完全控制型與太陽光型植物工廠栽培之荷蘭薄荷及市售葉片中各元素含量 129 表47. 冬季於完全控制型與太陽光型植物工廠栽培澳洲薄荷之生育性狀 131 表48. 於完全控制型與太陽光型植物工廠連續採收及市售澳洲薄荷葉片之SPAD讀值、硝酸鹽濃度及葉綠素、維生素C、齊墩果酸、熊果酸與總可溶性固形物含量 132 表49. 於完全控制型與太陽光型植物工廠栽培及市售澳洲薄荷葉片中精油所含檸檬烯及香芹酮之含量 134 表50. 於完全控制型與太陽光型植物工廠栽培及市售澳洲薄荷葉片中各元素含量 135 | |
dc.language.iso | zh-TW | |
dc.title | 植物工廠水耕栽培荷蘭薄荷與澳洲薄荷之研究 | zh_TW |
dc.title | Study on Hydroponic Cultivation of Mentha spicata and Mentha australis in Plant Factory | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊雯如,沈立言 | |
dc.subject.keyword | 硝酸鹽,養液,密度,光質,溫度,植物工廠, | zh_TW |
dc.subject.keyword | nitrate,nutrient solution,plant density,light quality,temperature,plant factory, | en |
dc.relation.page | 198 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-17 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝所 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 3.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。