Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63833
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林立虹(Li-Hung Lin)
dc.contributor.authorYun-Ju Chenen
dc.contributor.author陳韻如zh_TW
dc.date.accessioned2021-06-16T17:20:21Z-
dc.date.available2013-08-19
dc.date.copyright2012-08-19
dc.date.issued2012
dc.date.submitted2012-08-17
dc.identifier.citationBonin, A. S., and D. R. Boone (2006), The Order Methanobacteriales, in Prokaryotes, pp. 231-243.
Chao, H.-C., C.-F. You, and C.-H. Sun (2010), Gases in Taiwan mud volcanoes: Chemical composition, methane carbon isotopes, and gas fluxes, Applied Geochemistry, 25(3), 428-436.
Cheng, L., L. Dai, X. Li, H. Zhang, and Y. Lu (2011), Isolation and characterization of Methanothermobacter crinale sp. nov., a novel hydrogenotrophic methanogen from the Shengli oil field, Applied and Environmental Microbiology, 77(15), 5212-5219.
Conrad, R. (1999), Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments, FEMS Microbiology Ecology, 28(3), 193-202.
Conrad, R. (2005), Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal, Organic Geochemistry, 36(5), 739-752.
Conrad, R. (2009), The global methane cycle: recent advances in understanding the microbial processes involved, Environmental Microbiology Reports, 1(5), 285-292.
Conrad, R., and M. Klose (2011), Stable carbon isotope discrimination in rice field soil during acetate turnover by syntrophic acetate oxidation or acetoclastic methanogenesis, Geochimica et Cosmochimica Acta, 75(6), 1531-1539.
Conrad, R., M. Klose, and M. Noll (2009), Functional and structural response of the methanogenic microbial community in rice field soil to temperature change, Environmental Microbiology, 11(7), 1844-1853.
Conrad, R., M. Klose, Q. Yuan, Y. Lu, and A. Chidthaisong (2012), Stable carbon isotope fractionation, carbon flux partitioning and priming effects in anoxic soils during methanogenic degradation of straw and soil organic matter, Soil Biology and Biochemistry, 49(2012), 193-199.
Denman, K. L., G. Brasseur, A. Chidthaisong, P. Ciais, P. M. Cox, R. E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, and S. Menon (2007), Couplings between changes in the climate system and biogeochemistry, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US).
Dimitrov, L. I. (2002), Mud volcanoes--the most important pathway for degassing deeply buried sediments, Earth-Science Reviews, 59(1-4), 49-76.
Dimitrov, L. I. (2003), Mud volcanoes—a significant source of atmospheric methane, Geo-Marine Letters, 23(3), 155-161.
Erkel, C., M. Kube, R. Reinhardt, and W. Liesack (2006), Genome of Rice Cluster I archaea—the key methane producers in the rice rhizosphere, Science, 313(5785), 370-372.
Etiope, G., A. Feyzullayev, and C. L. Baciu (2009), Terrestrial methane seeps and mud volcanoes: a global perspective of gas origin, Marine and Petroleum Geology, 26(3), 333-344.
Ferry, J. G. (1992), Methane from acetate, Journal of bacteriology, 174(17), 5489-5495.
Fey, A., K. J. Chin, and R. Conrad (2001), Thermophilic methanogens in rice field soil, Environmental Microbiology, 3(5), 295-303.
Fey, A., P. Claus, and R. Conrad (2004), Temporal change of 13C-isotope signatures and methanogenic pathways in rice field soil incubated anoxically at different temperatures, Geochimica et Cosmochimica Acta, 68(2), 293-306.
Galand, P. E., H. Fritze, R. Conrad, and K. Yrjala (2005), Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems, Applied and Environmental Microbiology, 71(4), 2195-2198.
Garcia, J.-L., B. Ollivier, and W. B. Whitman (2006), The Order Methanomicrobiales, in Prokaryotes, pp. 208-230.
Gelwicks, J. T., J. B. Risatti, and J. M. Hayes (1994), Carbon isotope effects associated with aceticlastic methanogenesis, Applied and Environmental Microbiology, 60(2), 467-472.
Goevert, D., and R. Conrad (2009), Effect of substrate concentration on carbon isotope fractionation during acetoclastic methanogenesis by Methanosarcina barkeri and M. acetivorans and in rice field soil, Applied and Environmental Microbiology, 75(9), 2605-2612.
Hattori, S. (2008), Syntrophic acetate-oxidizing microbes in methanogenic environments, Microbes and Environments, 23(2), 118-127.
Heuer, V. B., M. Kruger, M. Elvert, and K.-U. Hinrichs (2010), Experimental studies on the stable carbon isotope biogeochemistry of acetate in lake sediments, Organic Geochemistry, 41(1), 22-30.
Karakashev, D., D. J. Batstone, E. Trably, and I. Angelidaki (2006), Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae, Applied and Environmental Microbiology, 72(7), 5138-5141.
Kendall, M. M., and D. R. Boone (2006), The Order Methanosarcinales, in Prokaryotes, pp. 244-256.
Kopf, A. J. (2002), Significance of mud volcanism, Rev. Geophys, 40(2), 1005.
Ling, Y.-C. (2009), Laboratory controls of precursor and temperature on the kinetics and isotope fractionations of microbial methane for anoxic sediments, master thesis, 128 pp, National Taiwan University, Taipei.
Ling, Y.-C., Y.-J. Chen, C.-H. Sun, T.-W. Cheng, P.-L. Wang, and L.-H. Lin (2012), Potential of microbial methane formation in a high-temperature hydrocarbon seep, Applied Geochemistry, 27(8), 1666-1678.
Liu, F., and R. Conrad (2010), Thermoanaerobacteriaceae oxidize acetate in methanogenic rice field soil at 50oC, Environmental Microbiology, 12(8), 2341-2354.
Liu, Y., and W. B. Whitman (2008), Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea, Annals of the New York Academy of Sciences, 1125(1), 171-189.
Lide, D. R., and H. P. R. Frederikse (1995), CRC Handbook of Chemistry and Physics, 76th Edition, CRC Press, Inc., Boca Raton, FL.
Ma, K., X. Liu, and X. Dong (2005), Methanobacterium beijingense sp. nov., a novel methanogen isolated from anaerobic digesters, International Journal of Systematic and Evolutionary Microbiology, 55(1), 325-329.
Ma, K., X. Liu, and X. Dong (2006), Methanosaeta harundinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor, International Journal of Systematic and Evolutionary Microbiology, 56(1), 127-131.
Mayumi, D., H. Mochimaru, H. Yoshioka, S. Sakata, H. Maeda, Y. Miyagawa, M. Ikarashi, M. Takeuchi, and Y. Kamagata (2011), Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high‐temperature petroleum reservoir of Yabase oil field (Japan), Environmental Microbiology, 13(8), 1995-2006.
Mori, K., and S. Harayama (2011), Methanobacterium petrolearium sp. nov. and Methanobacterium ferruginis sp. nov., mesophilic methanogens isolated from salty environments, International Journal of Systematic and Evolutionary Microbiology, 61(1), 138-143.
Nusslein, B., K.-J. Chin, W. Eckert, and R. Conrad (2001), Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel), Environmental Microbiology, 3(7), 460-470.
Nakamura, K., A. Takahashi, C. Mori, H. Tamaki, H. Mochimaru, K. Nakamura, K. Takamizawa, and Y. Kamagata (2012), Methanothermobacter tenebrarum sp. nov., a hydrogenotrophic thermophilic methanogen isolated from gas-associated formation water of a natural gas field in Japan., International Journal of Systematic and Evolutionary Microbiology, In press.
Noll, M., M. Klose, and R. Conrad (2010), Effect of temperature change on the composition of the bacterial and archaeal community potentially involved in the turnover of acetate and propionate in methanogenic rice field soil, FEMS Microbiology Ecology, 73(2), 215-225.
Penning, H., and R. Conrad (2006), Carbon isotope effects associated with mixed-acid fermentation of saccharides by Clostridium papyrosolvens, Geochimica et Cosmochimica Acta, 70(9), 2283-2297.
Penning, H., P. Claus, P. Casper, and R. Conrad (2006), Carbon isotope fractionation during acetoclastic methanogenesis by Methanosaeta concilii in culture and a lake sediment, Applied and Environmental Microbiology, 72(8), 5648-5652.
Sakai, S., H. Imachi, Y. Sekiguchi, A. Ohashi, H. Harada, and Y. Kamagata (2007), Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I, Applied and Environmental Microbiology, 73(13), 4326-4331.
Sejian, V., R. Lal, J. Lakritz, and T. Ezeji (2011), Measurement and prediction of enteric methane emission, International Journal of Biometeorology, 55(1), 1-16.
Shih, T. T. (1967), A survey of the active mud volcanoes in Taiwan and a study of their types and character of the mud., Petroleum Geology of Taiwan, 5, 259-311.
Shimizu, S., R. Upadhye, Y. Ishijima, and T. Naganuma (2011), Methanosarcina horonobensis sp. nov., a methanogenic archaeon isolated from a deep subsurface Miocene formation, International Journal of Systematic and Evolutionary Microbiology, 61(10), 2503-2507.
Sun, C.-H., S.-C. Chang, C.-L. Kuo, J.-C. Wu, P.-H. Shao, and J.-N. Oung (2010), Origins of Taiwan's mud volcanoes: evidence from geochemistry, Journal of Asian Earth Sciences, 37(2), 105-116.
Takai, K., K. Nakamura, T. Toki, U. Tsunogai, M. Miyazaki, J. Miyazaki, H. Hirayama, S. Nakagawa, T. Nunoura, and K. Horikoshi (2008), Cell proliferation at 122oC and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation, Proceedings of the National Academy of Sciences, 105(31), 10949.
Thauer, R. K., A.-K. Kaster, H. Seedorf, W. Buckel, and R. Hedderich (2008), Methanogenic archaea: ecologically relevant differences in energy conservation, Nature Reviews Microbiology, 6(8), 579-591.
Valentine, D. L., A. Chidthaisong, A. Rice, W. S. Reeburgh, and S. C. Tyler (2004), Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens1, Geochimica et Cosmochimica Acta, 68(7), 1571-1590.
Wang, J. S., J. A. Logan, M. B. McElroy, B. N. Duncan, I. A. Megretskaia, and R. M. Yantosca (2004), A 3-D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997, Global Biogeochem. Cycles, 18(3), 3011.
Wang, P.-L., J.-J. Wu, and L.-H. Lin (2007), Temperature dependent shift of microbial communities associated with muddy sediments in terrestrial hot spring., in Taiwan Geosciences Assembly, Taiwan.
Wasserfallen, A., J. Nolling, P. Pfister, J. Reeve, and E. C. de Macario (2000), Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov, International Journal of Systematic and Evolutionary Microbiology, 50(1), 43-53.
Whiticar, M. J., E. Faber, and M. Schoell (1986), Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation--isotope evidence, Geochimica et Cosmochimica Acta, 50(5), 693-709.
Whitman, W. B., and C. Jeanthon (2006), Methanococcales, in Prokaryotes, pp. 257-273.
Whitman, W. B., T. L. Bowen, and D. R. Boone (2006), The Methanogenic Bacteria, in Prokaryotes, pp. 165-207, Springer Verlag.
Wu, X.-L., K.-J. Chin, and R. Conrad (2002), Effect of temperature stress on structure and function of the methanogenic archaeal community in a rice field soil, FEMS Microbiology Ecology, 39(3), 211-218.
Yang, T. F., G.-H. Yeh, C.-C. Fu, C.-C. Wang, T.-F. Lan, H.-F. Lee, C.-H. Chen, V. Walia, and Q.-C. Sung (2004), Composition and exhalation flux of gases from mud volcanoes in Taiwan, Environmental Geology, 46(8), 1003-1011.
Yeh, G.-H., T. F. Yang, J.-C. Chen, Y.-G. Chen, and S.-R. Song (2005), Fluid geochemistry of mud volcanoes in Taiwan, Mud Volcanoes, Geodynamics and Seismicity, 227-237.
Zeikus, J. G., and R. S. Wolee (1972), Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile, Journal of Bacteriology, 109(2), 707-713.
宋聖榮、劉佳玟,2003,《台灣的溫泉》,台北:遠足文化。
林悅婷,2009,台灣西南部關仔嶺泥泉之微生物代謝多樣性研究,國立臺灣大學海洋研究所碩士論文,共 79 頁。
陳冠樵,2009,台灣熱泉生態系統中微生物代謝之生物能量評估,國立臺灣大學海洋研究所碩士論文,共 160 頁。
陳培源,2006,《台灣地質》,台北:台灣省應用地質技師公會。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63833-
dc.description.abstract本研究以關子嶺高溫泥泉為素材,利用地球化學與分子生物的方法,探討於關子嶺地下環境的微生物生成甲烷途徑以及微生物族群的結構是否存在異質性的分布。從關仔嶺地區的兩個不同地點(泥池與古井)所採集的沉積物,在無氧環境中,分別外加與無外加醋酸鹽類於不同溫度之下進行培養。在培養過程中定時測量甲烷、二氧化碳和醋酸鹽類的濃度,以及甲烷和二氧化碳的碳同位素值。並利用分子生物方法,分析包括 mcrA 基因和 16S rDNA 序列,以建立甲烷菌族
群種類與結構。
本研究結果顯示,不論是哪一個採樣點的沉積物培養,在不同溫度下,皆呈現醋酸鹽濃度下降並伴隨著甲烷產量的增加。然而甲烷的碳同位素分析卻發現,在不同樣本中出現了不同的趨勢。在泥池所採集的樣本,於 40 oC 到 60 oC 的培養中,甲烷的 δ13C 值隨著培養的時間增加而上升,然而在高溫的培養中,甲烷的 δ13C 值則是隨著時間呈現下降的狀況。由於使用醋酸鹽的甲烷菌所造成的碳同位素分化量通常比使用氫氣/二氧化碳和甲基類者所造成的分化量來得小,因此根據同位素的證據指出,隨著溫度上升,甲烷菌的種類逐漸由使用醋酸鹽類的甲烷菌轉變為使用氫氣和二氧化碳的甲烷菌。而取自可能來自比較深部區域之古井的樣本,在所有的培養溫度底下,甲烷的 δ13C 值皆是隨時間而下降。同位素的變化指示著,所提供的醋酸鹽類在被轉換成甲烷之前,先被分解為氫氣和二氧化碳。 mcrA 基因序列與基因庫比對,最相近的物種為使用氫氣和二氧化碳的甲烷菌種,然而, 16S rDNA 序列則與使用醋酸鹽類的甲烷菌和使用氫氣和二氧化碳的甲烷菌相近。地球化學結合分子生物的資料指示,這兩種不同的甲烷生成途徑是同時存在於關子嶺滲油氣區中較深處的區域內,而這兩個採樣點所採集到的沉積物與流體可能源自於不同深度的微生物群落。
zh_TW
dc.description.abstractThe aim of this study was to investigate whether methanogenic pathways and community structures are heterogeneously distributed in the Kuan-Tzu-Ling high temperature seepage using geochemical and molecular approaches. Sediments collected from two sites, the mud pool and the borehole, in the Kuan-Tzu-Ling region were incubated with and without exogenous acetate at different temperatures under anoxic conditions. Concentrations of CH4, CO2 and acetate, and δ13C of methane and CO2 were monitored through time. Analyses of mcrA gene that catalyzes the final step of methanogenesis and 16S rRNA gene sequences were also carried out to explore the assemblages of methanogenic populations.
Our results showed that methane yields increased along with the acetate consumption at different rates at different temperatures regardless of sediments inoculated. Analyses of carbon isotopic compositions of methane yielded different patterns for different samples. For the samples collected from a mud pool, the δ13C values of methane increased through time at 40 to 60oC. In contrast, the δ13C values decreased through time at high temperatures. Since acetoclastic methanogenesis generally fractionates carbon isotopes at a magnitude smaller than hydrogenotrophic and methylotrophic methanogenesis does, evidence based on the isotopic compositions suggests a shift from acetoclastic to hydrogenotrophic methanogensis with the increasing temperatures. For the sample collected from a borehole that potentially penetrates to a deeper region, the δ13C values of methane decreased through time at all investigated temperatures. The variation in isotopic compositions suggests that the provided acetate was decomposed into hydrogen and carbon dioxide prior to being converted into methane. Analyses of mcrA gene yielded the sequences related to those of hydrogenotrophic methanaogens. The detected 16S rDNA sequences were related to acetoclastic and hydrogenotrophic methanogens. These observations suggestthat the two methanogenic pathways may coexist in the deeper region of the Kuan-Tzu-Ling hydrocarbon seepage, and sediments and fluids collected from two sites might entrain different microbial communities at different depths.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:20:21Z (GMT). No. of bitstreams: 1
ntu-101-R98224103-1.pdf: 5268976 bytes, checksum: 61837c55684bcc3082ee3fe1446116d8 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝.................................................. II
摘要.................................................. IV
Abstract .............................................. V
目錄..................................................VII
圖目錄................................................ IX
表目錄................................................. X
第一章、緒論............................................1
1.1. 全球甲烷生成來源.................................. 1
1.2. 微生物甲烷生成作用................................ 3
1.2.1. 甲烷菌的種類與其代謝反應........................ 3
1.2.2. 甲烷菌的分布.................................... 5
1.2.3. 甲烷菌所造成之碳同位素分化...................... 6
1.3. 醋酸鹽類在陸域環境中之角色........................ 7
1.4. 泥漿熱泉與泥火山.................................. 10
1.5. 研究目的.......................................... 11
第二章、研究材料與方法................................. 12
2.1. 採樣地點──關仔嶺地質簡介........................ 12
2.2. 採樣地點與採集方法................................ 14
2.3. 實驗與分析方法.................................... 16
2.3.1. 培養實驗之設計.................................. 16
2.3.2. 甲烷和二氧化碳氣體濃度分析──氣相層析儀........ 17
2.3.3. 液體中醋酸濃度分析──離子層析儀................ 18
2.3.4. 碳同位素分析──氣相層析同位素比值質譜儀........ 18
2.3.5. 分子生物分析方法................................ 19
2.3.5.1. 培養沉積物中基因體 DNA 萃取及聚合酶連鎖反應 .. 19
2.3.5.2. 純化聚合酶連鎖反應產物........................ 22
2.3.5.3. 接合作用 (ligation) .......................... 22
2.3.5.4. 轉化作用 (transformation) .................... 22
2.3.5.5. 以菌落為模板進行聚合酶連鎖反應 (colony PCR) .. 22
2.3.5.6. 限制性片段長度多型性.......................... 23
2.3.5.7. 定序分析...................................... 23
2.3.5.8. 序列片段與基因庫資料比對分析.................. 23
第三章、結果........................................... 24
3.1. 氣體與液體化學分析結果............................ 24
3.1.1. 第一個採樣點的化學分析結果...................... 24
3.1.2. 第二個採樣點的化學分析結果...................... 24
3.2. 碳同位素分析結果.................................. 32
3.2.1. 第一個採樣點的同位素分析結果.................... 32
3.2.2. 第二個採樣點的同位素分析結果.................... 32
3.3. 分子生物分析結果.................................. 34
第四章、討論........................................... 38
4.1. 化學資料的訊息.................................... 38
4.1.1. 醋酸鹽總消耗量與甲烷總產量之關係................ 38
4.1.2. 快速反應之指數期的 μ 值 ....................... 40
4.1.3. 溫度與反應速率之關係............................ 45
4.2. 碳同位素的隱示.................................... 48
4.2.1. 第一個採樣點的碳同位素分化量──低溫環境........ 48
4.2.2. 第一個採樣點的碳同位素分化量─高溫環境...........53
4.3. 分子生物上的證據.................................. 57
4.4. 培養結果與現地環境之關係.......................... 59
第五章、結論........................................... 62
參考文獻............................................... 63
附錄一................................................. 69
附錄二................................................. 99
dc.language.isozh-TW
dc.subject碳同位素zh_TW
dc.subject甲烷zh_TW
dc.subject甲烷生成作用zh_TW
dc.subject甲烷菌zh_TW
dc.subjectMethaneen
dc.subjectmethanogenesisen
dc.subjectmethanogensen
dc.subjectcarbon isotopeen
dc.title台灣西南部關仔嶺溫泉微生物生成甲烷作用造成之同位素分化與族群結構關係zh_TW
dc.titleIsotopic fractionations and community structures responsible for methanogenesis in Kuan-Tzu-Ling hot spring, southwestern Taiwanen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王珮玲,楊燦堯,蘇志杰
dc.subject.keyword甲烷,甲烷生成作用,甲烷菌,碳同位素,zh_TW
dc.subject.keywordMethane,methanogenesis,methanogens,carbon isotope,en
dc.relation.page106
dc.rights.note有償授權
dc.date.accepted2012-08-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
5.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved