Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63824
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor符文美
dc.contributor.authorZih-Ting Tsengen
dc.contributor.author曾姿婷zh_TW
dc.date.accessioned2021-06-16T17:20:07Z-
dc.date.available2017-09-18
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-08-17
dc.identifier.citationAdelaide, J., Huang, H.E., Murati, A., Alsop, A.E., Orsetti, B., Mozziconacci, M.J., Popovici, C., Ginestier, C., Letessier, A., Basset, C., et al. (2003). A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene. Genes, chromosomes & cancer 37, 333-345.
Aghajanian, G.K., and Marek, G.J. (2000). Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Rev 31, 302-312.
Anton, E.S., Marchionni, M.A., Lee, K.F., and Rakic, P. (1997). Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development (Cambridge, England) 124, 3501-3510.
Austin, M.C., Bradley, C.C., Mann, J.J., and Blakely, R.D. (1994). Expression of Serotonin Transporter Messenger RNA in the Human Brain. J Neurochem 62, 2362-2367.
Bantick, R.A., Deakin, J.F.W., and Grasby, P.M. (2001). The 5-HT1A receptor in schizophrenia: a promising target for novel atypical neuroleptics? Journal of Psychopharmacology 15, 37-46.
Barros, C.S., Calabrese, B., Chamero, P., Roberts, A.J., Korzus, E., Lloyd, K., Stowers, L., Mayford, M., Halpain, S., and Müller, U. (2009). Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system. Proceedings of the National Academy of Sciences 106, 4507-4512.
Benes, F.M., and Berretta, S. (2001). GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 25, 1-27.
Bertram, I., Bernstein, H.G., Lendeckel, U., Bukowska, A., Dobrowolny, H., Keilhoff, G., Kanakis, D., Mawrin, C., Bielau, H., Falkai, P., et al. (2007). Immunohistochemical evidence for impaired neuregulin-1 signaling in the prefrontal cortex in schizophrenia and in unipolar depression. Annals of the New York Academy of Sciences 1096, 147-156.
Bublil, E.M., and Yarden, Y. (2007). The EGF receptor family: spearheading a merger of signaling and therapeutics. Current Opinion in Cell Biology 19, 124-134.
Buonanno, A., and Fischbach, G.D. (2001). Neuregulin and ErbB receptor signaling pathways in the nervous system. Current Opinion in Neurobiology 11, 287-296.
Burnet, P.W.J., Eastwood, S.L., and Harrison, P.J. (1996). 5-HT1A and 5-HT2A receptor mRNAs and binding site densities are differentially altered in schizophrenia. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 15, 442-455.
Burnet, P.W.J., Eastwood, S.L., and Harrison, P.J. (1997). [3H]WAY–100635 for 5–HT1A receptor autoradiography in human brain: a comparison with [3H]8–OH–DPAT and demonstration of increased binding in the frontal cortex in schizophrenia. Neurochemistry International 30, 565-574.
Carraway, K.L., 3rd, Weber, J.L., Unger, M.J., Ledesma, J., Yu, N., Gassmann, M., and Lai, C. (1997). Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases.Nature 387, 512-516.
Cases, O., Seif, I., Grimsby, J., Gaspar, P., Chen, K., Pournin, S., Muller, U., Aguet, M., Babinet, C., Shih, J.C., et al. (1995). Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268, 1763-1766.
Chen, Y.J., Johnson, M.A., Lieberman, M.D., Goodchild, R.E., Schobel, S., Lewandowski, N., Rosoklija, G., Liu, R.C., Gingrich, J.A., Small, S., et al. (2008). Type III neuregulin-1 is required for normal sensorimotor gating, memory-related behaviors, and corticostriatal circuit components. The Journal of neuroscience : the official journal of the Society for Neuroscience 28, 6872-6883.
Chong, V.Z., Thompson, M., Beltaifa, S., Webster, M.J., Law, A.J., and Weickert, C.S. (2008). Elevated neuregulin-1 and ErbB4 protein in the prefrontal cortex of schizophrenic patients. Schizophrenia Research 100, 270-280.
Chowdari, K.V., Mirnics, K., Semwal, P., Wood, J., Lawrence, E., Bhatia, T., Deshpande, S.N., B.K., T., Ferrell, R.E., Middleton, F.A., et al. (2002). Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Human Molecular Genetics 11, 1373-1380.
Corfas, G., Roy, K., and Buxbaum, J.D. (2004). Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nature neuroscience 7, 575-580.
Dean, B., Karl, T., Pavey, G., Boer, S., Duffy, L., and Scarr, E. (2008). Increased levels of serotonin2A receptors and serotonin transporter in the CNS of neuregulin 1 hypomorphic/mutant mice. Schizophrenia Research 99, 341-349.
Dean, B., Opeskin, K., Pavey, G., Naylor, L., Hill, C., Keks, N., and Copolov, D.L. (1995). [3H]Paroxetine Binding Is Altered in the Hippocampus but Not the Frontal Cortex or Caudate Nucleus from Subjects with Schizophrenia. J Neurochem 64, 1197-1202.
Ehrlichman, R.S., Luminais, S.N., White, S.L., Rudnick, N.D., Ma, N., Dow, H.C., Kreibich, A.S., Abel, T., Brodkin, E.S., Hahn, C.G., et al. (2009). Neuregulin 1 transgenic mice display reduced mismatch negativity, contextual fear conditioning and social interactions. Brain Res 1294, 116-127.
Falls, D. (2003). Neuregulins: functions, forms, and signaling strategies. Experimental Cell Research 284, 14-30.
Falls, D.L., Rosen, K.M., Corfas, G., Lane, W.S., and Fischbach, G.D. (1993). ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the neu ligand family. Cell 72, 801-813.
Fernandez, P.A., Tang, D.G., Cheng, L., Prochiantz, A., Mudge, A.W., and Raff, M.C. (2000). Evidence that axon-derived neuregulin promotes oligodendrocyte survival in the developing rat optic nerve. Neuron 28, 81-90.
Friedman, J.I., Adler, D.N., and Davis, K.L. (1999). The role of norepinephrine in the pathophysiology of cognitive disorders: potential applications to the treatment of cognitive dysfunction in schizophrenia and Alzheimer's disease. Biol Psychiat 46, 1243-1252.
Fu, A.K., Fu, W.Y., Cheung, J., Tsim, K.W., Ip, F.C., Wang, J.H., and Ip, N.Y. (2001). Cdk5 is involved in neuregulin-induced AChR expression at the neuromuscular
junction. Nature neuroscience 4, 374-381.
Gassmann, M., Casagranda, F., Orioli, D., Simon, H., Lai, C., Klein, R., and Lemke, G. (1995). Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378, 390-394.
Gerlai, R., Pisacane, P., and Erickson, S. (2000). Heregulin, but not ErbB2 or ErbB3, heterozygous mutant mice exhibit hyperactivity in multiple behavioral tasks. Behavioural brain research 109, 219-227.
Gill, R.K., Pant, N., Saksena, S., Singla, A., Nazir, T.M., Vohwinkel, L., Turner, J.R., Goldstein, J., Alrefai, W.A., and Dudeja, P.K. (2008). Function, expression, and characterization of the serotonin transporter in the native human intestine. American Journal of Physiology - Gastrointestinal and Liver Physiology 294, G254-G262.
Gollamudi, M., Nethery, D., Liu, J., and Kern, J.A. (2004). Autocrine activation of ErbB2/ErbB3 receptor complex by NRG-1 in non-small cell lung cancer cell lines. Lung Cancer 43, 135-143.
Green, M.F., and Braff, D.L. (2001). Translating the basic and clinical cognitive neuroscience of schizophrenia to drug development and clinical trials of antipsychotic medications. Biol Psychiat 49, 374-384.
Guidotti, A., Auta, J., Davis, J.M., Di-Giorgi-Gerevini, V., Dwivedi, Y., Grayson, D.R.,
Impagnatiello, F., Pandey, G., Pesold, C., Sharma, R., et al. (2000). Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 57, 1061-1069.
Gurevich, E.V., and Joyce, J.N. (1997). Alterations in the cortical serotonergic system in schizophrenia: A postmortem study. Biological Psychiatry 42, 529-545.
Hannon, J., and Hoyer, D. (2008). Molecular biology of 5-HT receptors. Behavioural brain research 195, 198-213.
Hashimoto, R., Straub, R.E., Weickert, C.S., Hyde, T.M., Kleinman, J.E., and Weinberger, D.R. (2003). Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiatry 9, 299-307.
Hernandez, I., and Sokolov, B.P. (1997). Abnormal expression of serotonin transporter mRNA in the frontal and temporal cortex of schizophrenics. Mol Psychiatry 2, 57-64.
Ho, W.H., Armanini, M.P., Nuijens, A., Phillips, H.S., and Osheroff, P.L. (1995). Sensory and motor neuron-derived factor. A novel heregulin variant highly expressed in sensory and motor neurons. The Journal of biological chemistry 270, 14523-14532.
Holmes, W.E., Sliwkowski, M.X., Akita, R.W., Henzel, W.J., Lee, J., Park, J.W., Yansura, D., Abadi, N., Raab, H., Lewis, G.D., et al. (1992). Identification of heregulin, a specific activator of p185erbB2. Science 256, 1205-1210.
Hoyer, D., Hannon, J.P., and Martin, G.R. (2002). Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Be 71, 533-554.
Huang, H.E., Chin, S.F., Ginestier, C., Bardou, V.J., Adelaide, J., Iyer, N.G., Garcia, M.J., Pole, J.C., Callagy, G.M., Hewitt, S.M., et al. (2004). A recurrent chromosome breakpoint in breast cancer at the NRG1/neuregulin 1/heregulin gene. Cancer Res 64, 6840-6844.
Ichikawa, J., Ishii, H., Bonaccorso, S., Fowler, W.L., O'Laughlin, I.A., and Meltzer, H.Y. (2001). 5-HT2A and D2 receptor blockade increases cortical DA release via 5-HT1A receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76, 1521-1531.
Joyce, J.N., Shane, A., Lexow, N., Winokur, A., Casanova, M.F., and Kleinman, J.E. (1993). Serotonin uptake sites and serotonin receptors are altered in the limbic system
of schizophrenics. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 8, 315-336.
Kim, J.S., Choi, I.G., Lee, B.C., Park, J.B., Kim, J.H., Jeong, J.H., and Seo, C.H. (2012).Neuregulin induces CTGF expression in hypertrophic scarring fibroblasts. Mol Cell Biochem 365, 181-189.
Krystal, J.H., D'Souza, D.C., Petrakis, I.L., Belger, A., Berman, R.M., Charney, D.S., Abi-Saab, W., and Madonick, S. (1999). NMDA Agonists and Antagonists as Probes of Glutamatergic Dysfunction and Pharmacotherapies in Neuropsychiatric Disorders. Harvard Review of Psychiatry 7, 125-143.
Kubota, N., Kiuchi, Y., Nemoto, M., Oyamada, H., Ohno, M., Funahashi, H., Shioda, S., and Oguchi, K. (2001). Regulation of serotonin transporter gene expression in human glial cells by growth factors. Eur J Pharmacol 417, 69-76.
Laruelle, M., Abi-Dargham, A., Casanova, M.F., Toti, R., Weinberger, D.R., and Kleinman, J.E. (1993). Selective abnormalities of prefrontal serotonergic receptors in schizophrenia. A postmortem study. Arch Gen Psychiatry 50, 810-818.
Law, A.J., Lipska, B.K., Weickert, C.S., Hyde, T.M., Straub, R.E., Hashimoto, R., Harrison, P.J., Kleinman, J.E., and Weinberger, D.R. (2006). Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5' SNPs associated with the disease. Proc Natl Acad Sci U S A 103, 6747-6752. Lewis, D.A., and Levitt, P. (2002). Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25, 409-432.
Liu, H., Heath, S.C., Sobin, C., Roos, J.L., Galke, B.L., Blundell, M.L., Lenane, M., Robertson, B., Wijsman, E.M., Rapoport, J.L., et al. (2002). Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proceedings of the National Academy of Sciences 99, 3717-3722.
Lopez-Bendito, G., Cautinat, A., Sanchez, J.A., Bielle, F., Flames, N., Garratt, A.N., Talmage, D.A., Role, L.W., Charnay, P., Marin, O., et al. (2006). Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell 125, 127-142.
Lu, Y., Yin, D.-M., Xiong, W.-C., and Mei, L. (2011). Modeling Schizophrenia in Neuregulin 1 and ErbB4 Mutant Mice. Animal Models of Schizophrenia and Related Disorders. In, P. O'Donnell, ed. (Humana Press), pp. 261-277.
Marchionni, M.A., Goodearl, A.D.J., Su Chen, M., Bermingham-McDonogh, O., Kirk, C., Hendricks, M., Danehy, F., Misumi, D., Sudhalter, J., Kobayashi, K., et al. (1993). Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362, 312-318.
Mazei, M.S., Pluto, C.P., Kirkbride, B., and Pehek, E.A. (2002). Effects of catecholamine uptake blockers in the caudate-putamen and subregions of the medial prefrontal cortex of the rat. Brain Res 936, 58-67.
Mei, L., and Xiong, W.C. (2008). Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 9, 437-452.
Michailov, G.V., Sereda, M.W., Brinkmann, B.G., Fischer, T.M., Haug, B., Birchmeier, C., Role, L., Lai, C., Schwab, M.H., and Nave, K.-A. (2004). Axonal Neuregulin-1 Regulates Myelin Sheath Thickness. Science 304, 700-703.
Millar, J.K., Christie, S., Anderson, S., Lawson, D., Hsiao-Wei Loh, D., Devon, R.S., Arveiler, B., Muir, W.J., Blackwood, D.H., and Porteous, D.J. (2001). Genomic structure and localisation within a linkage hotspot of Disrupted In Schizophrenia 1, a gene disrupted by a translocation segregating with schizophrenia. Molecular psychiatry 6, 173-178.
Mizuno, M., Sotoyama, H., Narita, E., Kawamura, H., Namba, H., Zheng, Y., Eda, T., and Nawa, H. (2007). A Cyclooxygenase-2 Inhibitor Ameliorates Behavioral Impairments Induced by Striatal Administration of Epidermal Growth Factor. The Journal of Neuroscience 27, 10116-10127.
Nave, K.A., and Salzer, J.L. (2006). Axonal regulation of myelination by neuregulin 1. Curr Opin Neurobiol 16, 492-500.
O'Tuathaigh, C.M., Babovic, D., O'Sullivan, G.J., Clifford, J.J., Tighe, O., Croke, D.T., Harvey, R., and Waddington, J.L. (2007). Phenotypic characterization of spatial cognition and social behavior in mice with 'knockout' of the schizophrenia risk gene neuregulin 1. Neuroscience 147, 18-27.
O'Tuathaigh, C.M., O'Connor, A.M., O'Sullivan, G.J., Lai, D., Harvey, R., Croke, D.T., and Waddington, J.L. (2008). Disruption to social dyadic interactions but not emotional/anxiety-related behaviour in mice with heterozygous 'knockout' of the schizophrenia risk gene neuregulin-1. Progress in neuro-psychopharmacology & biological psychiatry 32, 462-466.
O’Tuathaigh, C.M.P., Babovic, D., O’Meara, G., Clifford, J.J., Croke, D.T., and Waddington, J.L. (2007). Susceptibility genes for schizophrenia: Characterisation of mutant mouse models at the level of phenotypic behaviour. Neuroscience & Biobehavioral Reviews 31, 60-78.
Ozaki, M., Sasner, M., Yano, R., Lu, H.S., and Buonanno, A. (1997). Neuregulin-[beta] induces expression of an NMDA-receptor subunit. Nature 390, 691-694.
Parlapani, E., Schmitt, A., Wirths, O., Bauer, M., Sommer, C., Rueb, U., Skowronek, M.H., Treutlein, J., Petroianu, G.A., Rietschel, M., et al. (2010). Gene expression of neuregulin-1 isoforms in different brain regions of elderly schizophrenia patients. World Journal of Biological Psychiatry 11, 243-250.
Polter, A.M., and Li, X. (2010). 5-HT1A receptor-regulated signal transduction
pathways in brain. Cellular Signalling 22, 1406-1412.
Popova, N.K. (2006). From genes to aggressive behavior: the role of serotonergic system. BioEssays : news and reviews in molecular, cellular and developmental biology 28, 495-503.
Potkin, S.G., Saha, A.R., Kujawa, M.J., Carson, W.H., Ali, M., Stock, E., Stringfellow, J., Ingenito, G., and Marder, S.R. (2003). Aripiprazole, an antipsychotic with a novel mechanism of action, and risperidone vs placebo in patients with schizophrenia and schizoaffective disorder. Arch Gen Psychiatry 60, 681-690.
Rapoport, J.L., Addington, A.M., Frangou, S., and Psych, M.R. (2005). The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 10, 434-449.
Rentschler, S., Zander, J., Meyers, K., France, D., Levine, R., Porter, G., Rivkees, S.A., Morley, G.E., and Fishman, G.I. (2002). Neuregulin-1 promotes formation of the murine cardiac conduction system. Proceedings of the National Academy of Sciences 99, 10464-10469.
Rhodes, R.A., Murthy, N.V., Dresner, M.A., Selvaraj, S., Stavrakakis, N., Babar, S., Cowen, P.J., and Grasby, P.M. (2007). Human 5-HT Transporter Availability Predicts Amygdala Reactivity In Vivo. The Journal of Neuroscience 27, 9233-9237.
Rieff, H.I., and Corfas, G. (2006). ErbB receptor signalling regulates dendrite formation
in mouse cerebellar granule cells in vivo. Eur J Neurosci 23, 2225-2229.
Rimer, M., Barrett, D.W., Maldonado, M.A., Vock, V.M., and Gonzalez-Lima, F. (2005). Neuregulin-1 immunoglobulin-like domain mutant mice: clozapine sensitivity and impaired latent inhibition. Neuroreport 16, 271-275.
Rio, C., Rieff, H.I., Qi, P., and Corfas, G. (1997). Neuregulin and erbB Receptors Play a Critical Role in Neuronal Migration. Neuron 19, 39-50.
Roy, K., Murtie, J.C., El-Khodor, B.F., Edgar, N., Sardi, S.P., Hooks, B.M., Benoit-Marand, M., Chen, C., Moore, H., O'Donnell, P., et al. (2007). Loss of erbB signaling in oligodendrocytes alters myelin and dopaminergic function, a potential mechanism for neuropsychiatric disorders. Proc Natl Acad Sci U S A 104, 8131-8136.
Samuvel, D.J., Jayanthi, L.D., Bhat, N.R., and Ramamoorthy, S. (2005). A Role for p38 Mitogen-Activated Protein Kinase in the Regulation of the Serotonin Transporter: Evidence for Distinct Cellular Mechanisms Involved in Transporter Surface Expression. The Journal of Neuroscience 25, 29-41.
Schotte, A., Janssen, P., Gommeren, W., Luyten, W., Gompel, P., Lesage, A., Loore, K., and Leysen, J. (1996). Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology 124, 57-73.
Seeman, P. (1987). Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1, 133-152.
Serper, M.R. (2011). Aggression in Schizophrenia. Schizophrenia Bulletin 37, 897-898. Si, J., Wang, Q., and Mei, L. (1999). Essential roles of c-JUN and c-JUN N-terminal kinase (JNK) in neuregulin-increased expression of the acetylcholine receptor epsilon-subunit. The Journal of neuroscience : the official journal of the Society for Neuroscience 19, 8498-8508.
Silberberg, G., Darvasi, A., Pinkas-Kramarski, R., and Navon, R. (2006). The involvement of ErbB4 with schizophrenia: Association and expression studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 141B, 142-148.
Stefansson, H., Petursson, H., Sigurdsson, E., Steinthorsdottir, V., Bjornsdottir, S., Sigmundsson, T., Ghosh, S., Brynjolfsson, J., Gunnarsdottir, S., Ivarsson, O., et al. (2002). Neuregulin 1 and Susceptibility to Schizophrenia. The American Journal of Human Genetics 71, 877-892.
Stefansson, H., Thorgeirsson, T.E., Gulcher, J.R., and Stefansson, K. (2003). Neuregulin 1 in schizophrenia: out of Iceland. Mol Psychiatry 8, 639-640.
Straub, R.E., Jiang, Y., MacLean, C.J., Ma, Y., Webb, B.T., Myakishev, M.V., Harris-Kerr, C., Wormley, B., Sadek, H., Kadambi, B., et al. (2002). Genetic Variation in the 6p22.3 Gene DTNBP1, the Human Ortholog of the Mouse Dysbindin Gene, Is Associated with Schizophrenia. The American Journal of Human Genetics 71, 337-348.
Taveggia, C., Zanazzi, G., Petrylak, A., Yano, H., Rosenbluth, J., Einheber, S., Xu, X., Esper, R.M., Loeb, J.A., Shrager, P., et al. (2005). Neuregulin-1 Type III Determines the Ensheathment Fate of Axons. Neuron 47, 681-694.
Tosato, S., Dazzan, P., and Collier, D. (2005). Association Between the Neuregulin 1 Gene and Schizophrenia: A Systematic Review. Schizophrenia Bulletin 31, 613-617. van Kammen, D.P., and Kelley, M. (1991). Dopamine and norepinephrine activity in schizophrenia: An intergrative perspective. Schizophrenia Research 4, 173-191.
Vartanian, T., Fischbach, G., and Miller, R. (1999). Failure of spinal cord oligodendrocyte development in mice lacking neuregulin. Proc Natl Acad Sci U S A 96, 731-735.
Wang, J.Y., Miller, S.J., and Falls, D.L. (2001). The N-terminal region of neuregulin isoforms determines the accumulation of cell surface and released neuregulin ectodomain. The Journal of biological chemistry 276, 2841-2851.
Wen, D., Peles, E., Cupples, R., Suggs, S.V., Bacus, S.S., Luo, Y., Trail, G., Hu, S., Silbiger, S.M., Levy, R.B., et al. (1992). Neu differentiation factor: A transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit. Cell 69, 559-572.
Williams, N.M., Preece, A., Spurlock, G., Norton, N., Williams, H.J., Zammit, S., O'Donovan, M.C., and Owen, M.J. (2003). Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Mol Psychiatry 8, 485-487.
Yang, J.Z., Si, T.M., Ruan, Y., Ling, Y.S., Han, Y.H., Wang, X.L., Zhou, M., Zhang, H.Y., Kong, Q.M., Liu, C., et al. (2003). Association study of neuregulin 1 gene with schizophrenia (Nature Publishing Group).
Yarden, Y., and Sliwkowski, M.X. (2001). Untangling the ErbB signalling network. Nature reviews Molecular cell biology 2, 127-137.
Zha, Q., Wang, Y., Fan, Y., and Zhu, M.-Y. (2011). Dexamethasone-induced up-regulation of the human norepinephrine transporter involves the glucocorticoid receptor and increased binding of C/EBP-β to the proximal promoter of norepinephrine transporter. J Neurochem 119, 654-663.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63824-
dc.description.abstract精神分裂症是一種很嚴重的衰退性精神疾病,其病因可能和許多的基因以及環境因素有相關性。其中由Stanfansson等人對於冰島地區的精神分裂症家族做大規模的篩檢發現到Neurgegulin-1 (NRG1)基因是造成精神分裂症的致病基因之一,然而,NRG1基因對於精神分裂症的影響及其詳細機制還不是非常的了解,除此之外,造成精神分裂症當中的其中一種假說為其突觸間血清素的調控異常,而其調控異常的詳細機制仍不清楚,因此本篇論文的目的在於探討血清素及NRG1在神經以及神經膠細胞的相互調控機制。
藉由西方墨點法分析發現,在NRG1+/-小鼠的不同腦部核區出現了血清素轉運蛋白表現量增加的現象,表示其腦部的血清素回收速率和正常小鼠相比較之下高出許多,而另一方面,在體外探討血清素與NRG1調控關係的實驗中,我們使用了人類神經細胞瘤之細胞株SH-SY5Y及人類神經膠瘤之細胞株A172,發現外給NRG1會抑制其血清素轉運蛋白(SERT)的表現量,而其結果也在大鼠皮質初代神經細胞中被證實。而正腎上腺素轉運蛋白(NET)及多巴胺轉運蛋白(DAT)的表現量也同樣受到NRG1影響而產生了抑制效果。另一方面,外給NRG1會在神經細胞瘤細胞中減少SERT, NET 及DAT mRNA的表現量。我們進一步探討外給NRG1所產生的血清素轉運蛋白表現量的減少是透過何種機制來調控,發現此現象在神經細胞瘤中會被PD98059 (MEK抑制劑)及SB203580 (p38抑制劑) 所拮抗,而我們也觀察到外給NRG1會增加這些細胞中ERK 及p38的磷酸化,因此推論此現象可能是經由ERK及p38這兩條訊息傳遞機制所調控。
另一方面,在人類神經細胞瘤細胞株SH-SY5Y外加血清素則可增加NRG1及其受體erbB4的表現量,而在SH-SY5Y、A172及大腦皮質細胞外加血清素受體1A部分促進劑也可增加NRG1及其受體erbB4的表現量,顯示此結果可能是經由血清素受體1A亞型所調控。此外,給予血清素受體1A部分促進劑在神經細胞瘤中會增加erbB4及NRG1 mRNA的表現量。而在人類神經瘤細胞株SH-SY5Y外給正腎上腺素也可增加NRG1及其受體erbB4的表現量。我們進一步探討外給血清素受體1A部分促進劑所產生的erbB4表現量增加是透過何種機制來調控,發現此現象在神經細胞瘤中會被LY294002 (PI3K的抑制劑) 所拮抗,而我們也觀察到外給血清素受體1A促進劑會增加這些細胞中Akt的磷酸化,因此推論此現象可能是經由PI3K/Akt這條訊息傳遞機制所調控。
為了模擬人體長期服用抗憂鬱藥物之療法,我們於正常小鼠長期注射desipramine及duloxetine之後,將小鼠犧牲以觀察其腦部受體之變化。結果發現在不同的腦核區其erbB4的表現量增加,表示抗憂鬱藥物之血清素及正腎上腺素會促進erbB4的表現量。除此之外,藉由高效能液相層析法,我們發現突觸間隙的血清素含量在NRG1+/-小鼠當中的皮質,額狀皮質及紋狀體明顯下降許多,但正腎上腺素及多巴胺的含量和正常小鼠比較差異不大。我們的實驗顯示在NRG1和血清素,正腎上腺素之間存在著正向的調控關係,表示NRG1基因異常所引發的精神分裂症之可能與血清素的功能不足有關。
總結本篇的研究結果,血清素、NRG1和erbB4的失衡可能是造成精神分裂症的原因之一。
zh_TW
dc.description.abstractSchizophrenia is a severe, debilitating psychiatric disease and multiple genes and environmental insults participate in the pathogenesis of schizophrenia. Neuregulin-1 (NRG1) is one of susceptibility genes which originated from the genome-wide scan of schizophrenia families in Iceland in 2002. However, the relationship between the NRG1 and schizophrenia is still unclear. In addition, the serotonin dysfunction involved in schizophrenia is also still poorly understood. The aim of this study is to investigate the mutual regulation of NRG1 and serotonin system in neuronal cells and astrocytes.
It was found that protein expression of serotonin transporter was up-regulated in the various brain regions in NRG+/- mice, indicating that serotonin level was reduced in synaptic cleft because the higher uptake of serotonin in NRG1+/- mice. To evaluate the interaction between NRG1 and serotonin system in vitro, it was found that exogenous treatment of NRG1β decreased the expression of SERT in human neuroblastoma cell lines, SH-SY5Y, primary neurons and human glioblastoma cell lines, A172. The norepinephrine transporter (NET) was also down-regulated in SH-SY5Y cells and A172 cells. In addition, the dopamine transporter (DAT) was also reduced by NRG1β in SH-SY5Y cells. Moreover, the SERT, NET and DAT mRNA expression was reduced in SH-SY5Y cells due to NRG1β application. Furthermore, application of NRG1β reduced the SERT expression, which was antagonized by the treatment of PD98059 (MEK inhibitor) and SB203580 (p38 inhibitor). Moreover, exogenous NRG1β also increased the phosphorylation levels of ERK and P38. Therefore, the down-regulation of SERT by NRG1β treatment may signal through ERK and p38 pathways.
On the other hand, application of serotonin and 5-HT1A partial agonist increased the expression of erbB4 and NRG1 in SH-SY5Y cells, A172 cells and primary neurons, indicating that 5-HT1A receptor activation my up-regulate erbB4 and NRG1. Furthermore, the mRNA expression of erbB4 and NRG1 was also up-regulated in SH-SY5Y cells by 5-HT1A partial agonist. Moreover, application of norepinephrine also increased the erbB4 and NRG1 expression. Furthermore, application of 5-HT1A partial agonist increased the erbB4 expression, which was antagonized by the treatment of LY294002 (a PI3K/Akt inhibitor). Moreover, exogenous 5-HT1A partial agonist also increased the phosphorylation level of Akt, indicating that the up-regulation of erbB4 by 5-HT1A partial agonist may be associated with PI3K/Akt pathway. In addition, chronic treatment of desipramine and duloxetine in WT mice increased the erbB4 expression in different regions of brain, indicating that increase of serotonin and norepinephrine by antidepressants may have influence on the expression of erbB4 protein. In addition, serotonin levels but not norepinephrine and dopamine in various brain regions were reduced in NRG1+/- mice. These results indicated that there is positive regulation between NRG1, serotonin and norepinephrine and the serotonin dysregulation maybe implicated in the pathogenesis in schizophrenia accompanied by NRG1 defect.
In conclusion, dysregulation between NRG1, serotonin system and erbB4 may be a possible mechanism underlying the etiologies of schizophrenia.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:20:07Z (GMT). No. of bitstreams: 1
ntu-101-R99443005-1.pdf: 3047989 bytes, checksum: 15748f0159ad07fa1129d593882039cc (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsAbbreviations……………………………………………………………………….…I
摘要………………………………………………………………………………….III
Abstract ……………………………………………………………………………...VI
Chapter 1 Introduction...............................................................................................1
1-1. Schizophrenia…………………………………………………………….......1
1-2. Neuregulin 1 (NRG1)……………………………………………2
1-3. Relationship between NRG1 and schizophrenia……………5
1-4. Different hypothesis of schizophrenia……………………8
1-5. Serotonin system…………………………………………………9
1-6. The serotonin dysfunction hypothesis of schizophrenia……………….….….10
1-7. Aim………………………………………………………………………13
Chapter 2 Material and Methods……………………………………………..……..20
2-1. Reagents………………………………………………………………..….......20
2-2. Animals………………………………………………………………….….….21
2-3. Cell cultures………………………………………………………………........21
2-4. Western Blots…………………………………………………..………………22
2-5. Primary cortical neuronal cultures……………………………….....................22
2-6. SNRI treatment in mice………………………………………………………..23
2-7. RNA extraction………………………………………………………………….24
2-8. Reverse transcriptase polymerase chain reaction (RT-PCR) for
mRNA analysis…………………………………………………………………24
2-9. High performance chromatography (HPLC)…………………………………...26
2-10. Data analysis……………………………………………..……………………26
Chapter 3 Results…………………………………………………………………......27
3-1. Enhancement of serotonin transporter (SERT) expression in various brain regions in NRG1+/- mice……………………………………………………....27
3-2. Enhancement of norepinephrine transporter (NET) and dopamine transporter (DAT) expression in some brain regions in NRG1+/- mice…………………....28
3-3. Decrease of monoamine transporter protein expression by NRG1β treatment in neurons…………………………………………………………………………29
3-4. Decrease of monoamine transporter mRNA expression by NRG1β treatment in neurons…………………………………………………………………………30
3-5. Decrease of serotonin transporter and norepinephrine transporter protein expression by NRG1β treatment in astrocytes…………………………………30
3-6. Neuregulin1-induced serotonin transporter down-regulation is mediated through ERK and p38 MAPK pathways…………………………………………….….31
3-7. Increase of erbB4 and NRG1 protein expression by serotonin and 8-OH DPAT in neurons………………………………………………………………………….32
3-8. Increase of erbB4 and NRG1 mRNA expression by 8-OH DPAT in neurons….33
3-9. Increase of erbB4 and NRG1 protein expression by norepinephrine
in neurons………………………………………………………………….…...34
3-10. Increase of erbB4 and NRG1 protein expression by 8-OH DPAT and buspirone in astrocytes…………………………………………………………………….34
3-11. 8-OH DPAT-induced erbB4 up-regulation is mediated through PI3K/Akt pathways………………………………………………………………………35
3-12. Enhancement of erbB4 expression by chronic treatment of desipramine in WT mice…………………………………………………………………………...36
3-13. Enhancement of erbB4 expression by chronic treatment of duloxetine in WT mice…………………………………………………………………………...37
3-14. Reduction of serotonin content in various brain regions in NRG1+/- mice......37
3-15. Increase of monoamine oxidase A (MAO A) but not tryptophan hydroxylase (TPH) in various brain regions in NRG1+/- mice……………….………...….38
Chapter 4 Discussion and Conclusion……………………………………………….39
Figures…………………………………………………………………45
References………………………………………………………………67
Table 1-1. Summary of the phenotypes of different NRG1 mutant mice........................14
Figure 1-1. Structure of NRG ligands.............15
Figure 1-2. Canonical NRG1-ErbB signaling pathways.......................16
Figure 1-3. NRG1 functions..................17
Figure 1-4. The underlying correlation between NRG1 functions and schizophrenia phenotypes..............18
Figure 1-5. 5-HT1A receptor-mediated signal transduction pathways..............................19
Figure 3-1. Increase of serotonin transporter (SERT) in different brain regions in NRG1+/- mice...........45
Figure 3-2. Increase of norepinephrine transporter (NET) in some brain regions in NRG1+/- mice.....................46
Figure 3-3. Increase of dopamine transporter (DAT) in some brain regions in NRG1+/- mice...................47
Figure 3-4. Decrease of serotonin transporter (SERT) protein expression by NRG1βtreatment in SH-SY5Y cells and primary neurons......................................48
Figure 3-5. Decrease of norepinephrine transporter (NET) and dopamine transporter (DAT) protein expression by NRG1β treatment in SH-SY5Y cells............49
Figure 3-6. mRNA expression of serotonin transporter (SERT) and norepinephrine transporter (NET) are down-regulated by NRG1β treatment in SH-SY5Y cells......................50
Figure 3-7. Reduction of serotonin transporter (SERT) and norepinephrine (NET) protein expression by NRG1β treatment in A172 astrocyte cell lines.........51
Figure 3-8. Decrease of serotonin transporter (SERT) protein expression by NRG1βtreatment is mediated through ERK and p38 MAPK signaling pathways in SH-SY5Y cells....................52
Figure 3-9. Exogenous NRG1β increases ERK and p38 phosphorylation in SH-SY5Y cells.................53
Figure 3-10. Enhancement of erbB4 and NRG1 protein expression by 8-OH DPAT treatment in SH-SY5Y cells............54
Figure 3-11. Increase of erbB4 and NRG1 protein expression by 8-OH DPAT treatment in primary neurons.........................................................................................55
Figure 3-12. Enhancement of erbB4 and NRG1 mRNA expression by 8-OH DPAT treatment in SH-SY5Y cells...........56
Figure 3-13. Enhancement of erbB4 and NRG1 protein expression by serotonin (SE) treatment in SH-SY5Y cells.............................................................57
Figure 3-14. Enhancement of erbB4 and NRG1 protein expression by norepinephrine (NE) treatment in SH-SY5Y cells.............58
Figure 3-15. Enhancement of erbB4 and NRG1 protein expression by 8-OH DPAT treatment in A172 cells............59
Figure 3-16. Increase of erbB4 and NRG1 protein expression by buspirone treatment in A172 cells..............60
Figure 3-17. The enhancement of erbB4 by 8-OH DPAT treatment is mediated through PI3K/AKT pathway in SH-SY5Y cells..........................................61
Figure 3-18. Exogenous 8-OH DPAT treatment stimulates Akt phosphorylation in SH-SY5Y cells.................62
Figure 3-19. Enhancement of erbB4 expression by chronic treatment of desipramine in WT mice...................63
Figure 3-20. Enhancement of erbB4 expression by chronic treatment of duloxetine in WT mice..............64
Figure 3-21. Reduction of serotonin content but not norepinephrine and dopamine content in various brain regions in NRG1+/- mice...........................65
Figure 3-22. Increase of monoamine oxidase A (MAO A) but not tryptophan hydroxylase (TPH) in various brain regions in NRG1+/- mice.................66
dc.language.isoen
dc.subjectNRG1zh_TW
dc.subject精神分裂症zh_TW
dc.subjectErbB4zh_TW
dc.subject血清素zh_TW
dc.subject血清素轉運蛋白zh_TW
dc.subjecterbB4en
dc.subjectschizophreniaen
dc.subjectserotonin transporteren
dc.subjectserotonin systemen
dc.subjectneuregulin-1en
dc.title探討neuregulin-1與serotonin system在神經及神經膠細胞之相互調節作用zh_TW
dc.titleMutual regulation of neuregulin-1 and serotonin system in neuronal cells and astrocytesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林琬琬,顏茂雄,劉興華,楊春茂
dc.subject.keyword精神分裂症,NRG1,ErbB4,血清素,血清素轉運蛋白,zh_TW
dc.subject.keywordschizophrenia,neuregulin-1,serotonin system,serotonin transporter,erbB4,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2012-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved