請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63786完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾賢忠(Shiang-Jong Tzeng) | |
| dc.contributor.author | Kai-Li Lin | en |
| dc.contributor.author | 林凱莉 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:19:07Z | - |
| dc.date.available | 2017-09-18 | |
| dc.date.copyright | 2012-09-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-17 | |
| dc.identifier.citation | Bassing CH., Suh H., Ferguson DO., Chua KF., Manis J., and Eckersdorff M. (2003) Histone H2A.X: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114, 359–370.
Brian C., Gilbert K., Laura B., and Rick G. S. (2004) Identification of caspase-independent apoptosis in epithelial and cancer cells. J Pharmacol. 310, 126-134. Burma S., Chen BP., Murphy M., Kurimasa A., and Chen DJ. (2001) ATM phosphorylates histone H2A.X in response to DNA double-strand breaks. J Biol Chem. 276, 42462-42467. Celeste A., Fernandez-Capetillo O., Kruhlak MJ., Pilch DR., Staudt DW., Lee A., Bonner RF., Bonner WM., and Nussenzweig A. (2003) Histone H2A.X phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol. 5, 675-679. Chen Y., Sun R., Han W., Zhang Y., Song Q., Di C., and Ma D. (2001) Nuclear translocation of PDCD5 (TFAR19): an early signal for apoptosis? FEBS Lett. 509, 191-196. Chen LN., Wang Y., Ma DL., and Chen YY. (2006) Short interfering RNA against the PDCD5 attenuates cell apoptosis and caspase-3 activity induced by Bax over-expression. Apoptosis 11, 101-111. Chen C., Zhou H., Xu L., Xu D., Wang Y., Zhang Y., Liu X., Liu Z., Ma D., Ma Q., and Chen Y. (2010) Recombinant human PDCD5 sensitizes chondrosarcomas to cisplatin chemotherapy in vitro and in vivo. Apoptosis 15, 805-813. Circu ML., and Aw TY. (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 48,749-762. Cook PJ., Ju G., Telese F., Wang X., Glass CK., and Rosenfeld MG. (2009) Tyrosine dephosphorylation of H2A.X modulates apoptosis and survival decisions. Nature 458, 591–596. Davis RJ. (2000) Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252. Durocher D., and Jackson SP. (2001) DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol. 13, 225-231. Fernandez-Capetillo O., Allis CD., and Nussenzweig A. (2004) Phosphorylation of histone H2B at DNA double-strand breaks. J Exp Med. 199, 1671–1677. Fruehauf JP., and Meyskens FL. Jr. (2007) Reactive oxygen species: a breath of life or death? Clin Cancer Res. 13, 789-794. Fullgrabe J., Hajji N., and Joseph B. (2010) Cracking the death code: apoptosis-related histone modifications. Cell Death Differ. 17, 1238-1243. Ghavidel A., and Schultz MC. (2001) TATA binding protein-associated CK2 transduces DNA damage signals to the RNA polymerase III transcriptional machinery. Cell 106, 575-584. Hetz C., Bernasconi P., Fisher J., Lee AH., Bassik MC., and Antonsson B. (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1α . Science 312, 572- 576. Ira T., and David R. (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 13, 184-190. James AM., and Antony R. (2005) Apoptosis and autoimmunity. Curr Opin Immunol. 17, 583-588. Kang H., Jung JW., Kim MK., and Chung JH. (2009) CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA damage. PLoS One. 4, e6611. Kapuscinski J. (1995) DAPI: a DNA-specific fluorescent probe. Biotech Histochem. 70, 220-233. Klaus A., and Heribert H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 55, 373–399. Li H., Zhang X., Song X., Zhu F., Wang Q., Guo C., Liu C., Shi Y., Ma C., Wang X., and Zhang L. (2012) PDCD5 promotes cisplatin-induced apoptosis of glioma cells via activating mitochondrial apoptotic pathway. Cancer Biol Ther. 13 Lin SY., Li TY., Liu Q., Zhang C., Li X., Chen Y., Zhang SM., Lian G., Liu Q., Ruan K., Wang Z., Zhang CS., Chien KY., Wu J., Li Q., Han J., and Lin SC. (2012) GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 336, 477-481. Liu H., Wang Y., Zhang Y., Song Q., Di C., Chen G., Tang J., and Ma D. (1999) TFAR19, a novel apoptosis-related gene cloned from human leukemia cell line TF-1, could enhance apoptosis of some tumor cells induced by growth factor withdrawal. Biochem Biophys Res Commun. 254, 203-210. Loor G., Kondapalli J., Schriewer JM., Chandel NS., Vanden TL., and Schumacker PT. (2010) Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis. Free Radic Biol Med. 49, 1925-1936. Maria R., Daniele P., and Lorenzo P. (2002) Protein kinase CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) induces apoptosis and caspase-dependent degradation of haematopoietic lineage cell-specific protein 1 (HS1) in Jurkat cells. Biochem. J. 364, 41-47. Natalia SP., Ronald JA., Leslie R., and Eric JS. (1996) DNA damage and p53-mediated cell cycle arrest: A reevaluation. Proc Natl Acad Sci U.S.A. 93, 15209–15214. Nishitoh H., Saitoh M., Mochida Y., Takeda K., Nakano H., Rothe M., Miyazono K., and Ichijo H. (1998) ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell 2, 389-395. Pikarsky E., Porat RM., Stein I., Abramovitch R., Amit S., Kasem S., Gutkovich-Pyest E., Urieli-Shoval S., Galun E., and Ben-Neriah Y. (2004) NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461-466. Pinna LA., and Allende JE. (2009) Protein kinase CK2: an ugly duckling in the kinome pond. Cell Mol. Life Sci. 66, 1795–1799. Robert A. (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177-2196. Robert MF. (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med. 348, 1365-1375. Roos WP., and Kaina B. (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med. 12, 440-450. Rogakou EP., Pilch DR., Orr AH., Ivanova VS., and Bonner WM.(1998) DNA double-stranded breaks induce histone H2A.X phosphorylation on serine 139. J Biol Chem. 273, 5858-5868. Salvi M., Xu D., Chen Y., Cabrelle A., Sarno S., and Pinna LA. (2009) Programmed cell death protein 5 (PDCD5) is phosphorylated by CK2 in vitro and in 293T cells. Biochem Biophys Res Commun. 387, 606-610. Simon HU., Haj-Yehia A., and Levi-Schaffer F. (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5, 415-418. Solier S., Sordet O., Kohn KW., and Pommier Y. (2009) Death receptor-induced activation of the Chk2- and histone H2A.X-associated DNA damage response pathways. Mol Cell Biol. 29, 68-82. Spinola M., Meyer P., Kammerer S., Falvella FS., Boettger MB., Hoyal CR., Pignatiello C., Fischer R., Roth RB., Pastorino U., Haeussinger K., Nelson MR., Dierkesmann R., Dragani TA., and Braun A. (2006) Association of the PDCD5 locus with lung cancer risk and prognosis in smokers. J Clin Oncol. 24, 1672-1678. Strahl BD., and Allis CD. (2000) The language of covalent histone modifications. Nature 403, 41-45. Susan E. (2007) Apoptosis: A review of programmed cell death. Toxicol Pathol. 35, 495–516. Szegezdi E., Logue SE., Gorman AM., and Samali A. (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 7, 880–885. Tang Y., Luo J., Zhang W., and Gu W. (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24, 827-839. Trembley H., Wang G., Unger G., Slaton J., and Ahmed K. (2009) CK2: a key player in cancer biology. Cell Mol. Life Sci. 66,1858–1867 Wang N., Lu HS., Guan ZP., Sun TZ., Chen YY., Ruan GR., Chen ZK., Jiang J., and Bai CJ. (2007) Involvement of PDCD5 in the regulation of apoptosis in fibroblast-like synoviocytes of rheumatoid arthritis. Apoptosis 12, 1433-1441. Xu L., Chen Y., Song Q., Xu D., Wang Y., and Ma D. (2009) PDCD5 interacts with Tip60 and functions as a cooperator in acetyltransferase activity and DNA damage-induced apoptosis. Neoplasia 11, 345–354. Yang YH, Zhao M, Li WM, Lu YY, Chen YY, Kang B., and Lu YY. (2006) Expression of programmed cell death 5 gene involves in regulation of apoptosis in gastric tumor cells. Apoptosis 11, 993-1001. Yin A., Jiang Y., Zhang X., Zhao J., and Luo H. (2010) Transfection of PDCD5 sensitizes colorectal cancer cells to cisplatin-induced apoptosis in vitro and in vivo. Eur J Pharmacol. 649, 120-126. Yu KK, Liu SA, Li WF, Shen B, Lan MD, Lang ZW, and Cheng J. (2008) Elevated expression of PDCD5 and Fas in hepatocellular carcinoma and its adjacent tissues. World Chinese J Digestol. 16:1820-1824. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63786 | - |
| dc.description.abstract | Programmed cell death 5 (PDCD5)是細胞在執行凋亡過程中扮演促進性角色的一個分子,最早是在TF-1細胞因失去生長因子而開始凋亡的過程中被發現。正常生理狀態下,細胞在遭受外在環境壓力時,欲維持內部恆定而選擇走向程序性凋亡的過程中該分子的活化被視為是早期訊號。先前的研究報導指出,多數的癌細胞為促進生長與存活,會透過降低PDCD5的表達來達成,此一現象凸顯出PDCD5的作用除了調控細胞生理恆定,亦在腫瘤細胞的惡化與增生扮演不可或缺的角色。但活化PDCD5的分子機制以及其下游的標的分子,目前仍不清楚。本研究之目的在於釐清PDCD5的活化調控方式以及與其一同參與細胞凋亡過程的相關作用分子。我們同時採用化學合成藥物以及分子生物技術分別來提高或抑制PDCD5分子在細胞內的表現程序,藉以研究PDCD5細胞凋亡的重要性。我們發現無論是在DNA損傷或細胞遭受氧化壓力的情況下導致的細胞凋亡,均會顯著提升PDCD5蛋白質的表達,並伴隨著活化caspase的連鎖效應。此外,經由RNA干擾技術抑制內生性PDCD5的生合成,顯示能非常有效地抑制因DNA損傷或者是過氧化自由基的破壞而引發的細胞凋亡,意味著PDCD5在細胞凋亡不可或缺。另外,我們也發現經由轉譯後修飾PDCD5蛋白本身離胺酸的乙醯化為該分子活化與執行細胞凋亡功能所必須。有關PDCD5基因和其蛋白質的調控和功能仍持續在解碼與釐清,我們希望透過發現與瞭解調控PDCD5表達與活化的相關作用分子作為開發藥物治療的標的。 | zh_TW |
| dc.description.abstract | Programmed cell death 5 (PDCD5) is a human apoptosis related molecule, which was first identified as TF-1 cell apoptosis related gene-19 (TFAR19) under growth factor or serum deprivation. The PDCD5 gene encodes a protein which shares significant homology across species ranging from yeast to mice. Under physiological conditions, the protein is thought to play an early and pivotal role in cells undergoing apoptosis prior to activation of the caspase cascade. PDCD5 exhibits a ubiquitous expression pattern and a decreased level of PDCD5 expression is associated with tumorigenesis such as in prostate cancer, colorectal carcinoma as well as ovarian cancer. However, the molecular mechanisms of PDCD5-mediated cell death and its downstream targets remain poorly understood. This prompted us to study the regulatory machinery of PDCD5 in cell death with respect to its triggers, partners and targets. We used both genetic and chemical approaches to address the functional role of PDCD5 in cells undergoing apoptosis. We found that both cisplatin and oxidative stress induced an up-regulation of PDCD5 levels in a dose-dependent and time-dependent fashion during apoptosis. Furthermore, the induction of PDCD5 was accompanied by activation of caspase cascades, leading to cleavage of PARP-1. PDCD5 was essential for apoptosis induction since small hairpin RNAs specific for silencing PDCD5 markedly rescued cell death in response to cisplatin and oxidative stress. When PDCD5 was activated in response to cisplatin and ROS, a portion of PDCD5 translocated from cytoplasm into nucleus, where activation of PDCD5 was linked to its lysine acetylation. Detailed analyses of post-translational modifications of PDCD5 and the identification of proteins responsible for such modifications for propagation of downstream signaling through PDCD5 are under investigation. In summary, our data have provided new insights into the molecular basis of PDCD5 in mediating apoptosis in response to DNA damage agents. More understanding of PDCD5’s actions should pave the way for the development of new targeted therapeutics that aimed to sensitize tumors to chemotherapeutic drugs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:19:07Z (GMT). No. of bitstreams: 1 ntu-101-R99443003-1.pdf: 4848955 bytes, checksum: adbb7ba1f4274fb8bd970b3881664589 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Contents
口試委員審定書……………………………………………………………………I 中文摘要……………………………………………………………………………II Abstract……………………………………………………………………………III List of Abbreviations……………………………………………...........V Contents……………………………………………………………………………VIII Contents of Figures and Tables……………………....................XI Chapter 1. Introduction…………………………………………...........1 1.1 Gene ontology and general profile of PDCD5…..................2 1.2 PDCD5 is a early signal for cell death……..…................3 1.3 Phosphorylation of PDCD5 in accelerating cell apoptosis……...3 1.4 Potential link of PDCD5 and death receptor pathway………………4 1.5 PDCD5 as a pro-apoptotic signal for cell death in multiple carcinomas……5 1.6 Programmed cell death (PCD or apoptosis)………................6 1.7 DNA damage induced cell death…………………………………….....7 1.8 Role of reactive oxygen species (ROS) in apoptosis induction..8 1.9 Endoplasmic reticulum stress-induced apoptosis…………………..9 1.10 Apoptosis related post-translational modifications of histones…………..11 1.11 Statement of the Motive……………………………………………….12 Chapter 2. Materials and Methods…………………....……….........14 2.1 Materials 2.1.1 Generation of plasmid constructs……………………...........15 2.1.2 RNA interference…………………………………………….........15 2.1.3 Cell culture………………………………………………….........16 2.2 Methods 2.2.1 Cell viability assay……………………………………...........16 2.2.2 Reverse transcription-polymerase chain reaction(RT-PCR)…..16 2.2.3 Western Blotting……………………………………………………….17 2.2.4 Immunofluorescence staining (IFS)…………………............17 2.2.5 Immunoprecipitation…………………………………………………..18 2.2.6 Chromatin Immunoprecipitation……………………………........18 2.2.7 Statistical analysis………………………………………………….19 Chapter 3. Results……………………………..………………………….…20 3.1 PDCD5 expression and cellular localization in BJAB B lymphoma cells and 293T human embryonic kidney cells……....21 3.2 Activation of PDCD5 in response to cisplatin induced DNA damage and apoptosis in 293T cells………………………....22 3.3 Reactive oxygen species (ROS) can augment PDCD5 expression .....................................24 3.4 PDCD5 is essential for cisplatin- and ROS-induced apoptosis………………...….....................................26 3.5 Knockdown of PDCD5 gene by specific short hairpin RNAs abolishes cisplatin-induced cell death in 293T cell...……28 3.6 Effects of over-expression of wild-type and S119A mutant constructs of PDCD5-EGFP and PDCD5-DsRed on 293T cells…30 3.7 Post-translational modification of PDCD5 through acetylation.....................................................32 3.8 Potential PDCD5 interacting proteins at basal state in 293T cells…...…………...................................34 Chapter 4. Discussion……………………………...……………………….37 Figures and Tables…………….…………………...…….…………………41 References……………………………………………………...………………79 | |
| dc.language.iso | en | |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | 程序性細胞凋亡因子5 | zh_TW |
| dc.subject | DNA損傷 | zh_TW |
| dc.subject | PDCD5 | en |
| dc.subject | apoptosis | en |
| dc.subject | DNA damage | en |
| dc.subject | ROS | en |
| dc.title | 探討PDCD5引致細胞凋亡之分子機制 | zh_TW |
| dc.title | Molecular mechanisms of programmed cell death 5-mediated cell death: triggers, partners and targets | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄧述諄(Shu-Chun Teng),李財坤(Tsai-Kun Li),俞松良(Sung-Liang Yu) | |
| dc.subject.keyword | 程序性細胞凋亡因子5,細胞凋亡,DNA損傷, | zh_TW |
| dc.subject.keyword | PDCD5,apoptosis,DNA damage,ROS, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
