請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63785
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉家瑄(Char-Shine Liu) | |
dc.contributor.author | Mei-Chi Fan | en |
dc.contributor.author | 范美琪 | zh_TW |
dc.date.accessioned | 2021-06-16T17:19:06Z | - |
dc.date.available | 2012-08-20 | |
dc.date.copyright | 2012-08-20 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-17 | |
dc.identifier.citation | Chung, S. L., Wang, S. L., Shinjo, R., Lee, C. S., and Chen, C. H., 2000, Initiation of arc magmatism in an embryonic continental rifting zone of the southernmost part of Okinawa Trough: Terra Nova, v. 12, no. 5, p. 225-230.
Christensen, N. I., and Mooney, W. D., 1995, Seismic velocity structure and composition of the continental crust: A global view: Journal of Geophysical Research, v. 100, p. 9761-9761. Deffontaines, B., Liu, C. S., Angelier, J., Lee, C. T., Sibuet, J. C., Tsai, Y. B., Lallemand, S., Lu, C. Y., Lee, C. S., Hsu, S. K., Chu, H. T., Lee, J. C., Pathier, E., Chen, R. F., Cheng, C. T., Liao, C. W., Lin, C. C., Hsu, H. H., 2001, Preliminary neotectonic map of onshore-offshore Taiwan: TAO, Supplementary Issue, p. 339-349. Dobrin, M. B., and Savit, C. H., 1976, Acquiring seismic reflection data on land: Introduction to geophysical prospecting, McGraw-Hill, New York, p. 78-114. Foster, D. J., and Mosher, C. C., 1992, Suppression of multiple reflections using the Radon transform: Geophysics, v. 57, no. 3, p. 386-395. Hagen, R. A., Duennebier, F. K., and Hsu, V., 1988, A seismic refraction study of the crustal structure in the active seismic zone east of Taiwan: Journal of Geophysical Research, v. 93, no. B5, p. 4785–4796. Hamblin, W., 1965, Origin of “reverse drag” on the downthrown side of normal faults: Geological Society of America Bulletin, v. 76, no. 10, p. 1145-1164. Hsiao, L. Y., Lin, K. A., Huang, S.T., and Teng, L. S., 1998, Structural characteristics of the southern Taiwan-Sinzi folded zone: Petroleum Geology of Taiwan, v. 32, p. 133-153. Jiao, J., Negut, D., Link, B. and Kelman Seismic Processing, 1999, Multiple Attenuation Using Eigenvalue Decomposition: Society of Exploration Geophysicists. Kimura, M., 1985, Back-arc rifting in the Okinawa Trough: Marine and Petroleum Geology, v. 2, no. 3, p. 222-240. Klingelhoefer, F., Lee, C. S., Lin, J. Y., and Sibuet, J. C., 2009, Structure of the southernmost Okinawa Trough from reflection and wide-angle seismic data: Tectonophysics, v. 466, no. 3-4, p. 281-288. Lallemand, S., Font, Y., Bijwaard, H., and Kao, H., 2001, New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications: Tectonophysics, v. 335, no. 3-4, p. 229-253. Landmark Graphic Corporation, 1998, ProMAX 2D advanced techniques training manual: Halliburton Company, p.1-464. Lee, C. S., Shor Jr, G. G., Bibee, L. D., Lu, R. S., and Hilde, T. W. C., 1980, Okinawa Trough: origin of a back-arc basin: Marine Geology, v. 35, no. 1-3, p. 219-241. Letouzey, J., and Kimura, M., 1985, Okinawa Trough genesis: structure and evolution of a backarc basin developed in a continent: Marine and Petroleum Geology, v. 2, no. 2, p. 111-130. Leyden, R., Ewing, M., and Murauchi, S., 1973, Sonobuoy refraction measurements in East China Sea: Am. Assoc. Petrol. Geol. Bull, v. 57, no. 12, p. 2396-2403. Lin, J. Y., Sibuet, J. C., Lee, C. S., Hsu, S. K., and Klingelhoefer, F., 2007, Origin of the southern Okinawa Trough volcanism from detailed seismic tomography: Journal of Geophysical Research, v. 112, no. B08308. Liu, Z., and Bleistein, N., 1995, Migration velocity analysis: theory and an iterative algorithm: Geophysics, v. 60, no. 1, p. 142-153. Ludwig, W. J., Den, N., and Murauchi, S., 1973, Seismic-reflection measurements of southwest Japan margin: Journal of Geophysical Research, v. 78, p. 2508–2515. Murauch, S., Den, N., Asano, S., Hotta, H., Yoshii, T., Asanuma, T., Hagiwara, K., Ichikawa, K., Sato, T., and Ludwig, W., 1968, Crustal structure of the Philippine Sea: Journal of Geophysical Research, v. 73, no. 10, p. 3143-3171. Park, J. O., Tokuyama, H., Shinohara, M., Suyehiro, K., and Taira, A., 1998, Seismic record of tectonic evolution and backarc rifting in the southern Ryukyu island arc system: Tectonophysics, v. 294, no. 1-2, p. 21-42. Schultz, P. S., and Sherwood, J. W. C., 1980, Depth migration before stack: Geophysics, v. 45, no. 3, p. 376-393. Sheriff, R. E., and Geldart, L. P., 1990, Seismic method: Applied geophysics: Cambridge Univ Press, p. 136-266 Sheriff, R. E., and Geldart, L, P., 1995, Seismic velocity: Exploration Seismology: Cambridge University Press, p. 107-145. Sibuet, J. C., Deffontaines, B., Hsu, S. K., Thareau, N., Le, Formal, J. P., Liu, C. S., and ACT party, 1998, Okinawa trough backarc basin: Early tectonic and magmatic evolution: Journal of Geophysical Research, v. 103, no. B12, p. 30245-30267. Sibuet, J. C., Letouzey, J., Barbier, F., Charvet, J., Foucher, J. P., Hilde, T. W. C., Kimura, M., Chiao, L. Y., Marsset, B., and Muller, C., 1987, Back arc extension in the Okinawa Trough: Journal of Geophysical Research, v. 92, no. B13, p. 14041-14063. Teng, L. S., 1996, Extensional collapse of the northern Taiwan mountain belt: Geology, v. 24, no. 10, p. 949. Wang, K. L., 2004, Geochemical Constraints for the Genesis of Post-collisional Magmatism and the Geodynamic Evolution of the Northern Taiwan Region: Journal of Petrology, v. 45, no. 5, p. 975-1011. Wang, K. L., Chung, S. L., Chen, C. H., Shinjo, R., and Yang, T. F., 1999, Post-collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough: Tectonophysics, v. 308, no. 3, p. 363-376. Wang, T. K., McIntosh, K., Nakamura, Y., Liu, C. S., and Chen, H. W., 2001, Velocity-interface structure of the southwestern Ryukyu subduction zone from EW9509-1 OBS/MCS data: Marine Geophysical Research, v. 22, no. 4, p. 265-287. White, R. S., McKenzie, D., and O’Nions, R. K., 1992, Oceanic crustal thickness from seismic measurements and rare earth element inversions:: Journal of Geophysical Research, v. 97, no. 19, p. 683-619. Wiggins, J. W., 1988, Attenuation of complex water-bottom multiples by wave-equation-based prediction and subtraction: Geophysics, v. 53, no. 12, p. 1527-1539. Wu, Y. M., Chang, C.-H., Zhao, L., Shyu, J. B. H., Chen, Y. G., Sieh, K., and Avouac, J. P., 2007, Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations: Journal of Geophysical Research, v. 112, no. B8. Zhou, B., and Greenhalgh, S., 1996, Multiple suppression by 2D filtering in the parabolic τ–p domain: a wave‐equation‐based method1: Geophysical prospecting, v. 44, no. 3, p. 375-401. 徐泊樺,1999,南沖繩海槽地質構造之震測解釋。國立中央大學應用地質研究所碩士論文。共60頁。 葉金勳,1999,消除長週期海底複反射技術之應用與探討。國立臺灣大學海洋研究所碩士論文。共85頁。 潘玉生,陳讚煌,鐘火盛,游銘銳,1992,震測資料之認識與解釋。中油探採叢書。共127頁。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63785 | - |
dc.description.abstract | 臺灣東部海域之南沖繩海槽是臺灣弧陸碰撞最早發生的區域,由於碰撞中心逐漸往西南轉移,琉球弧溝系統中的弧後擴張盆地向西南延伸,使得此區域現在為碰撞後期的張裂與崩塌,而南沖繩海槽的地殼構造演化以及現在其地殼性質到底是屬於拉張變薄的大陸地殼亦或是弧後張裂新生之海洋地殼是仍待解決之問題。本研究針對南沖繩海槽中收集到的長支距反射震測資料進行進階震測資料處理,目的在於提升震測剖面的影像品質、增加剖面解釋的可信度及獲得地層正確的速度資訊,藉此來了解南沖繩海槽的速度構造與地殼特性。本研究彙整與分析南沖繩海槽之49條反射震測資料,發覺剖面中構造較複雜之地區常有繞射、訊號雜亂或是被複反射所覆蓋的現象,不僅造成真實的地層形貌與構造無法顯示出來,另一方面也大大的提高了解釋的困難度。因此,本研究首先利用一些特殊的資料處理技術來消除複反射的能量,提高震測資料的訊噪比,然後再利用長支距反射震測資料的優勢,針對特定區域進行進階的震測資料疊前深度移位處理及疊代移位速度分析,以獲得地層正確的速度資訊。研究結果顯示,南沖繩海槽的速度構造大約可分為三層,地層速度由淺至深依序為1.5 km/s -2.35 km/s、2.8 km/s-3 km/s及基盤速度4.5 km/s;從沉積物的分布來看,南沖繩海槽中的沉積物較厚,海槽東側之沉積物較薄。以速度約在2.5 km/s ~3 km/s之間的地層來說,東海大陸棚最厚,且向下梯度增加最多,推側此層應為受到固結而壓密的沉積物層。在火成岩體聚積區域,接近海床表面之鬆散沉積物薄層速度為1.5 km/s-1.9 km/s,然後震波速度以垂直向下梯度0.9為單位增加至3 km/s左右,再逐漸增加至5 km/s。在某些層面中觀察到震波速度突然高起又下降之情形,解釋為火成岩體以岩床形式侵入沉積層中所造成的結果。本研究分析的震測剖面資料經過進階資料處理後,除了可讓深部訊號清楚呈現之外,淺部訊號也變得更清晰,不僅可以了解到火成岩體與沉積物的接觸關係,也可以看到速度在不同地層中所表現的差異。本研究所獲得的速度分析結果顯示南沖繩海槽的地殼速度趨勢落於拉張大陸地殼的速度範圍內,因此本研究認為目前南沖繩海槽的地殼性質,應以拉張性的大陸地殼為主。 | zh_TW |
dc.description.abstract | The Southern Okinawa Trough (SOT) east of Taiwan is the place where initial arc-continent collision occurred, as the collision center moved southwestward and the Ryukyu backarc extension developed toward Taiwan, the present SOT is in post-collision and extension stage. The structural evolution and the nature of the SOT crust are thus important issues. In this study, we use advanced seismic data processing techniques to process the large offset multichannel seismic reflection data for better imaging and understanding the geological processes and velocity structures of the SOT crust. Radon filter and eigenvector filter have been used to eliminate the multiples on the seismic profiles, and pre-stack depth migration and iterative migrate velocity analysis have been performed to produce better seismic images and correct velocity structures. Our results show that the upper crustal velocity structures in the SOT can be roughly divided into three layers. The top layer consists of the most recent sediments that show velocities from 1.5 km/s to 2.35 km/s;the second layer consists of compacted sediments with velocities from 2.8 km/s to 3 km/s;the third layer is basement with high velocities of 4.5 km/s or greater. The most recent sediment layer is thicker in the central part of the SOT than in the eastern SOT. The layer of compacted sediments is thickest in the East China Sea continental shelf. Velocities of the intrusive volcanic zone show a thin sedimentary layer with velocities from 1.5 km/s-1.9 km/s on top. Velocity of the deeper strata increases from 1.9 to 3 km/s with a gradient of 0.9, and then gradually increased to 5 km/s further deep. In certain areas, velocity may increase suddenly then drop down. This is due to igneous rocks intruded into sedimentary strata in forms of sills. After advanced seismic data processing, signals in the deeper strata are much clear, and that help us not only to observe the contact relationships of igneous rocks and sediments, but also to comprehend the velocity difference of the different strata. Comparing the character of the crustal velocity structure of the SOT derived from this study with the oceanic crust velocity (White et al., 1992) and the extensional continental crust velocity (Christensen and Mooney., 1995), it appears that the crustal velocity character in the SOT is similar to the extensional continental crust. Thus, we suggest that the nature of the crust in the SOT is extensional continental crust. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:19:06Z (GMT). No. of bitstreams: 1 ntu-101-R99241304-1.pdf: 26891149 bytes, checksum: 223ec4dfbe4f96599613183c4f526197 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員審定書 I
致謝 II 中文摘要 III 英文摘要 IV 目錄 V 圖目錄 VII 表目錄 X 第一章 前言 1 1-1 研究動機與目的 1 1-2 研究策略 3 第二章 南沖繩海槽之地質構造分布 9 2-1 研究區域之震測資料 9 2-2 基本震測資料處理步驟 15 2-3 構造解釋與分布 18 2-3.1 主要構造辨識 18 2-3.2 區域構造繪製 19 2-3.3 南沖繩海槽構造分布情形 19 2-4 震測剖面問題及解決方法 28 2-4.1 複反射 28 2-4.2 繞射、訊號雜亂 28 2-4.3 速度資訊的重要性 28 2-4.4 求取速度 29 第三章 消除複反射 32 3-1 複反射的種類 32 3-1.1 短週期複反射 32 3-1.2 長週期複反射 32 3-2 消除複反射的方法及原理 34 3-3 消除複反射之資料處理流程 42 3-3.1 Radon 濾波 42 3-3.2 特徵向量濾波 42 3-4 消除複反射剖面前、後之比較 45 第四章 疊前深度移位處理及疊代移位速度分析 50 4-1 疊前深度移位處理及疊代移位速度分析之原理 50 4-1.1 疊前深度移位處理 50 4-1.2 疊代移位速度分析 50 4-2 初始速度模型 54 4-3 PSDM & MVA之資料處理流程 61 4-4 速度正確之判斷依據 61 第五章 研究結果與討論 67 5-1 剖面處理前、後之差異 67 5-2 速度在剖面中所代表的意義 71 5-3 綜合討論 81 5-3.1 比較速度分析結果 81 5-3.2 結果與Park et al. (1998)連結 82 5-3.3 南沖繩海槽速度構造與地殼性質 83 第六章 結論 90 附錄A 96 附錄B 97 附錄C 98 | |
dc.language.iso | zh-TW | |
dc.title | 南沖繩海槽上部地殼的速度構造 | zh_TW |
dc.title | Upper Crustal Velocity Structure of the southern Okinawa Trough | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 鄧屬予(Louis S. Teng) | |
dc.contributor.oralexamcommittee | 許樹坤(Shu-Kun Hsu),戚務正(Wu-Cheng Chi) | |
dc.subject.keyword | 南沖繩海槽,弧後張裂,震測資料處理,速度構造,地殼性質, | zh_TW |
dc.subject.keyword | Southern Okinawa Trough,backarc extension,eliminate multiples,crustal velocity structure, | en |
dc.relation.page | 98 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-17 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 26.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。