請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63777完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何志浩(Jr-Hau He) | |
| dc.contributor.author | Cherng-Rong Ho | en |
| dc.contributor.author | 何承融 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:18:53Z | - |
| dc.date.available | 2017-08-20 | |
| dc.date.copyright | 2012-08-20 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-17 | |
| dc.identifier.citation | Chapter 1
1. M. B. Prince, Silicon Solar Energy Converters. Journal of Applied Physics 26, 534 (1955). 2. D. E. Carlson, C. R. Wronski, Amorphous Silicon Solar Cell. Applied Physics Letters 28, 671 (1976). 3. X. Wu, High-Efficiency Polycrystalline CdTe Thin-film Solar Cells. Solar Energy 77, 803 (2004). 4. M. Yamaguchi, A. Yamamoto, Y. Itoh, Effect of Dislocations on the Efficiency on the Thin-film GaAs Solar Cells on Si Substrates. Journal of Applied Physics 59, 1751 (1986). 5. I. Repins, M. A. Contreras1, B. Egaas1, C. DeHart, J. Scharf, C. L. Perkins, B. To, R. Noufi, 19•9%-Efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81•2% Fill Factor. Progress in Photovoltaics: Research and Applications 16, 235 (2008). 6. C. Pecile, A. Palnelli, A. Girlando, Studies of Organic Semiconductors for 40 Years—V. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 171, 69 (1989). 7. A. Ruini, M. J. Caldas, G. Bussi, E. Molinari, Solid State Effects on Exciton States and Optical Properties of PPV. Physical Review Letters 88, 206403 (2002). 8. J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, Exciton Diffusion and Dissociation in a Poly(p-phenylenevinylene)/C60 Heterojunction Photovoltaic Cell. Applied Physics Letters 68, 3120 (1996). 9. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Science 258, 1474 (1992). 10. P. Peumans, S. R. Forrest, Very-High-Efficiency Double-heterostructure Copper Phthalocyanine/C60 Photovoltaic Cells. Applied Physics Letters 79, 126 (2001). 11. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, D. L. Kwong, An Inverted Organic Solar Cell Employing a Sol-gel Derived ZnO Electron Selective Layer and Thermal Evaporated MoO3 Hole Selective Layer. Applied Physics Letters 93, 221107 (2008). Chapter 2 1. V. Shrotriya, Y. Yao, G. Li, Y. Yang, Effect of Self-organization in Polymer/Fullerene Bulk Heterojunctions on Solar Cell Performance. Applied Physics Letters 89, 063505 (2006). 2. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Science 258, 1474 (1992). 3. Z. Xu, L.M. Chen, G. Yang, C.H. Huang, J. Hou, Y. Wu, G. Li, C.S. Hsu, Y. Yang, Vertical Phase Separation in Poly(3-Hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells. Advanced Functional Materials 19, 1227 (2009). 4. Y. Şahin, S. Alem, R. de Bettignies, J. M. Nunzi, Development of Air Stable Polymer Solar cells Using an Inverted Gold on Top Anode Structure. Thin Solid Films 476, 340 (2005). 5. R. Steim, S. A. Choulis, P. Schilinsky, C. J. Brabec, Interface Modification for Highly Efficient Organic Photovoltaics. Applied Physics Letters 92, 093303 (2008). 6. A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, S. Yoshikawa, High Performance Polythiophene/Fullerene Bulk Heterojunction Solar Cell with a TiOx Hole Blocking Layer. Applied Physics Letters 90, 163517 (2007). 7. A. Watanabe, A. Kasuya, Effect of Atmospheres on the Open-circuit Photovoltage of Nanoporous TiO2/Poly(3-Hexylthiophene) Heterojunction Solar Cell. Thin Solid Films 483, 358 (2005). 8. P. Ravirajan, A. M. Peiró, M. K. Nazeeruddin, M. Graetzel ,D. D. C. Bradley, J. R. Durrant, J. Nelson, Hybrid Polymer/Zinc Oxide Photovoltaic Devices with Vertically Oriented ZnO Nanorods and an Amphiphilic Molecular Interface Layer. The Journal of Physical Chemistry B 110, 7635 ( 2006). 9. W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Hybrid Nanorod-Polymer Solar Cells. Science 295, 2425 (2002). 10. A. Manor, E. A. Katz, T. Tromholt, F. C. Krebs, Enhancing Functionality of ZnO Hole Blocking Layer in Organic Photovoltaics. Solar Energy Materials and Solar Cells 98, 491 (2012). 11. F. C. Krebs, S. A. Gevorgyan, J. Alstrup, A Roll-to-roll Process to Flexible Polymer Solar Cells: Model Studies, Manufacture and Operational Stability Studies. Journal of Materials Chemistry 19, 5442 (2009). 12. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, D. L. Kwong, An Inverted Organic Solar cell Employing a Sol-gel Derived ZnO Electron Selective Layer and Thermal Evaporated MoO3 Hole Selective Layer. Applied Physics Letters 93, 221107 (2008). 13. J. H. Lee, K. H. Ko, B. O. Park, Electrical and Optical Properties of ZnO Transparent Conducting Films by the Sol–gel Method. Journal of Crystal Growth 247, 119 (2003). 14. Y. Hu, X. Diao, C. Wang, W. Hao, T. Wang, Effects of Heat Treatment on Properties of ITO Films Prepared by Rf Magnetron Sputtering. Vacuum 75, 183 (2004). 15. Q. Shen, J. Kobayashi, L. J. Diguna, T. Toyoda, Effect of ZnS Coating on the Photovoltaic Properties of CdSe Quantum Dot-Sensitized Solar Cells. Journal of Applied Physics 103, 084304 (2008). 16. Y. Liu, J. Wang, Co-Sensitization of TiO2 by PbS Quantum Dots and Dye N719 in Dye-Sensitized Solar Cells. Thin Solid Films 518, 154 (2010). 17. A. L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination. Physical Review 56, 978 (1939). 18. P. Baláž, Influence of Thermal Activation of Chalcopyrite on Activity and Selectivity of Catalytic Decomposition of Isopropyl Alcohol. Reaction Kinetics and Catalysis Letters 36, 287 (1988). 19. Y. S. Kim, W. P. Tai, S. J. Shu, Effect of Preheating Temperature on Structural and Optical Properties of ZnO Thin Films by Sol–Gel Process. Thin Solid Films 491, 153 (2005). 20. W. K. Yang, W. C. Chuan, C. D. Hwang, Preparation and Conductivity Enhancement of Al-Doped Zinc Oxide Thin Films Containing Trace Ag Nanoparticles by the Sol–Gel Process. Nanotechnology 18, 305604 (2007). 21. C. W. Tang, Two-Layer Organic Photovoltaic Cell. Applied Physics Letters 48, 183 (1986). 22. J. H. Schön, E. Arushanov, N. Fabre, E. Bucher, Transport Properties of N-type CuGaSe2. Solar Energy Materials and Solar Cells 61, 417 (2000). 23. J. F. Dobson, A. White, A. Rubio, Asymptotics of the Dispersion Interaction: Analytic Benchmarks for Van Der Waals Energy Functionals. Physical Review Letters 96, 073201 (2006). 24. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nanowire Dye-Sensitized Solar Cells. Nat Mater 4, 455 (2005). Chapter 3 1. M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, S. Bauer, Ultrathin and Lightweight Organic Solar Cells with High Flexibility. Nat Commun 3, 770 (2012). 2. G. Li, R. Zhu, Y. Yang, Polymer Solar Cells. Nat Photon 6, 153 (2012). 3. Z. Wang, H. Wang , B. Liu, W. Qiu, J. Zhang, S. Ran, H. Huang, J. Xu, H. Han, D. Chen, G. Shen, Transferable and Flexible Nanorod-Assembled TiO2 Cloths for Dye-Sensitized Solar Cells, Photodetectors, and Photocatalysts. ACS Nano 5, 8412 (2011). 4. G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. van Rens, D. M. de Leeuw, Flexible Active-matrix Displays and Shift Registers Based on Solution-Processed Organic Transistors. Nat Mater 3, 106 (2004). 5. K. Leo, Organic Light-Emitting Diodes: Efficient and Flexible Solution. Nat Photon 5, 716 (2011). 6. T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, T. W. Lee, Extremely Efficient Flexible Organic Light-Emitting Diodes with Modified Graphene Anode. Nat Photon 6, 105 (2012). 7. J. Liu, D. B. Buchholz, R. P. H. Chang, A. Facchetti, T. J. Marks, High-Performance Flexible Transparent Thin-Film Transistors Using a Hybrid Gate Dielectric and an Amorphous Zinc Indium Tin Oxide Channel. Advanced Materials 22, 2333 (2010). 8. C. Santato, F. Cicoira, R. Martel, Organic Photonics: Spotlight on Organic Transistors. Nat Photon 5, 392 (2011). 9. G. Shen, J. Xu, X. Wang, H. Huang, D. Chen, Growth of Directly Transferable In2O3 Nanowire Mats for Transparent Thin-film Transistor Applications. Advanced Materials 23, 771 (2011). 10. H. Gwon, H. S. Kim, K. U. Lee, D. H. Seo, Y. C. Park, Y. S. Lee, B. T. Ahn, K. Kang, Flexible Energy Storage Devices Based on Graphene Paper. Energy & Environmental Science 4, 1277 (2011). 11. I. Mochida, Y. Koraia, M. Shirahamaa, S. Kawanoa, T. Hadaa, Y. Seob, M. Yoshikawac, A. Yasutaked, Removal of SOx and NOx over Activated Carbon Fibers. Carbon 38, 227 (2000). 12. C. Brasquet, P. L. Cloirec, Adsorption onto Activated Carbon Fibers: Application to Water and Air Treatments. Carbon 35, 1307 (1997). 13. B. Liu, J. Zhang, X. Wang, G. Chen, Di Chen, C. Zhou, G. Shen, Hierarchical Three-Dimensional ZnCo2O4 Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries. Nano Letters 12, 3005 (2012). 14. I. M. D. Rosa, A. Dinescu, F. Sarasini, M. S. Sarto, A. Tamburrano, Effect of Short Carbon Fibers and MWCNTs on Microwave Absorbing Properties of Polyester Composites Containing Nickel-Coated Carbon Fibers. Composites Science and Technology 70, 102 (2010). 15. X. Luo, D. D. L. Chung, Electromagnetic Interference Shielding Using Continuous Carbon-Fiber Carbon-Matrix and Polymer-Matrix Composites. Composites Part B: Engineering 30, 227 (1999). 16. N. J. S. Sohi, M. Rahaman, D. Khastgir, Dielectric Property and Electromagnetic Interference Shielding Effectiveness of Ethylene Vinyl Acetate-Based Conductive Composites: Effect of Different Type of Carbon Fillers. Polymer Composites 32, 1148 (2011). 17. S. Han, D. D. L. Chung, Increasing the Through-Thickness Thermal Conductivity of Carbon Fiber Polymer–Matrix Composite by Curing Pressure Increase and Filler Incorporation. Composites Science and Technology 71, 1944 (2011). 18. D. D. L. Chung, Electromagnetic Interference Shielding Effectiveness of Carbon Materials. Carbon 39, 279 (2001). 19. H. C. Lee, J. Y. Kim, C. H. Noh, K. Y. Song, S. H. Cho, Selective Metal Pattern Formation and Its EMI Shielding Efficiency. Applied Surface Science 252, 2665 (2006). 20. J. Jing, Z. Yuhua, Y. Xiao-qian, J. Rongping, G. Dong-mei, C. Xi, The Influence of Microwave Radiation from Cellular Phone on Fetal Rat Brain. Electromagnetic Biology and Medicine 31, 57 (2012). 21. B. Ratier, J. M. Nunzi, M. Aldissi, T. M. Kraft, E. Buncel, Organic Solar Cell Materials and Active Layer Designs—Improvements with Carbon Nanotubes: A Review. Polymer International 61, 342 (2012). 22. M. Arjmand, T. Apperley, M. Okoniewski, U. Sundararaj, Comparative Study of Electromagnetic Interference Shielding Properties of Injection Molded versus Compression Molded Multi-Walled Carbon Nanotube/Polystyrene Composites. Carbon. 23. B. P. Grady, in Carbon Nanotube–Polymer Composites. (John Wiley & Sons, Inc.) , pp. 305-330 (2011) 24. F. Brunetti, E. Tamburri, A. Reale, A. D. Carlo, P. Lugli, S. Orlanducci, M.L. kkkTerranova, A. Fiori, Carbon Nanotube/Conducting Polymer Composites for Electronic Application: Materials Preparation and Devices Assembling. Nanotechnology, 4th IEEE Conference, 530 (2004) 25. P. Glatkowski, E. Turevskaya, D. Britz, D. Rich, M. DiCologero, T. Kelliher, J. Sennott, D. Landis, R. Braden, P. Mack, J. Piche, Carbon nanotube transparent electrodes: A case for photovoltaics in Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE, 1302 (2009), 26. T. Umeyama, H. Imahori, Carbon Nanotube-Modified Electrodes for Solar Energy Conversion. Energy & Environmental Science 1, 120 (2008). 27. J. M. Nugent, K. S. V. Santhanam, A. Rubio, P. M. Ajayan, Fast Electron Transfer Kinetics on Multiwalled Carbon Nanotube Microbundle Electrodes. Nano Letters 1, 87 (2001). 28. Y. Yang, M. C. Gupta, K. L. Dudley, R. W. Lawrence, Novel Carbon Nanotube−Polystyrene Foam Composites for Electromagnetic Interference Shielding. Nano Letters 5, 2131 (2005). 29. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nanowire Dye-Sensitized Solar Cells. Nat Mater 4, 455 (2005). 30. D. Fujishima, H. Kanno, T. Kinoshita, E. Maruyama, M. Tanaka, M. Shirakawa, K. Shibata, Organic Thin-Film Solar Cell Employing a Novel Electron-Donor Material. Solar Energy Materials and Solar Cells 93, 1029 (2009). 31. S. Pande, B. P. Singh, R. B. Mathur, T. L. Dhami, P. Saini, S. K. Dhawan, Improved Electromagnetic Interference Shielding Properties of MWCNT-PMMA Composites Using Layered Structures. Nanoscale Research Letters 4, 327 (2009). 32. N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, P. C. Eklund, Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites. Nano Letters 6, 1141 (2006). 33. H. M. Kim, K. Kim, C. Y. Lee, J. Joo, S. J. Cho, H. S. Yoon, D. A. Pejaković, J. W. Yoo, A. J. Epstein, Electrical Conductivity and Electromagnetic Interference Shielding of Ultiwalled Carbon Nanotube Composites Containing Fe Catalyst. Applied Physics Letters 84, 589 (2004). 34. M. Caraglia, M. Marra, F. Mancinelli, G. D'Ambrosio, R. Massa, A. Giordano, A. Budillon, A. Abbruzzese, E. Bismuto, Electromagnetic Fields at Mobile Phone Frequency Induce Apoptosis and Inactivation of the Multi-Chaperone Complex in Human Epidermoid Cancer Cells. Journal of Cellular Physiology 204, 539 (2005). 35. Y. Yonglai, C. G. Mool, L. D. Kenneth, Towards Cost-Efficient EMI Shielding Materials Using Carbon Nanostructure-Based Nanocomposites. Nanotechnology 18, 345701 (2007). 36. Y. C. Chen, C.C. Li, Y. F. Lee, W. Chin, Y. H. Lin, S. Yi. Lu, C. T. Hsu , S. H. Syue, H. J. Chen, B. Y. Wei, W. K. Hsu, S. C. Chang, High Electromagnetic Adsorption at Radiofrequency by Impedance Matched Carbon Nanotube Composites. Journal of Materials Chemistry 18, 4616 (2008). 37. X. Shui, D. Chung, Nickel Filament Polymer-Matrix Composites with Low Surface Impedance and High Electromagnetic Interference Shielding Effectiveness. Journal of Electronic Materials 26, 928 (1997). 38. H. B. Zhang, Q. Yan, W. G. Zheng, Z. He, Z. Z. Yu, Tough Graphene−Polymer Microcellular Foams for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces 3, 918 (2011). 39. M. Bernal, I. Molenberg, S. Estravis, M. Angel, R. Perez, I. Huynen, M. Angel L. Manchado, R. Verdejo, Comparing the Effect of Carbon-Based Nanofillers on the Physical Properties of Flexible Polyurethane Foams. Journal of Materials Science 47, 5673 (2012). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63777 | - |
| dc.description.abstract | 有機太陽能電池它具有非常多優越的特性,像是可彎曲、重量輕、低成本、溶液製程可大面積製造等優點,目前被大家所矚目成為新一代的太陽能電池。
首先我們運用銅銦鎵量子點,將之與以P3HT:PCBM 為主動層的有機太陽能電池做巧妙的結合並大幅度地提高了電池的效率。銅銦鎵量子點不但在吸收方面與有機高分子的吸收有互補的效果,而且它也減小了主動層與電子傳輸層的能階差,使得電子傳輸更有效率。此外,添加銅銦鎵量子點於氧化鋅表面能夠提升氧化鋅的結晶性,使得氧化鋅的缺陷減少,同時提升太陽能電池的並聯電阻。由於量子點非常小,在量子點表面會有非常強的偶極矩能夠幫助激子的分離。造成短路電流與填充因子分別有 9.43% 與 3.38% 的上升,光電轉換效率從 3.32% 上升到 4.11%,約有 23.80% 的增加。 第二,由於可彎曲、方便可攜帶的光電元件已經成為下個世代研究的主流。嘗試製作可穿著的抗電磁波光伏元件為此實驗的目標。因此我們運用碳纖維布其高導電與輕薄可彎曲的特性,在其上成長奈米碳管與蒸鍍有機分子製作成同時擁有光伏效應與抗電磁波特性的元件。發現到此元件產生明顯的光電流並且擁有很好的電磁波屏蔽效果。在手機頻率 0~2 GHz,屏蔽效果達到20 dB,意味著在此區間抗電磁波的應用達到商業價值的水準。 | zh_TW |
| dc.description.abstract | Organic photovoltaics have received an intensive attention due to their promising features, such as low cost, light weight, simple solution-based process, and flexibility.
In this thesis, first, We report an introduction of CuGaSe2 quantum dots (CGS QDs) into ZnO/P3HT:PCBM based organic photovoltaics (OPVs) to show an enhancement in power conversion efficiency (PCE). The incorporated QDs can not only increase the absorption of OPVs but also reduce band offset between the active layer and the hole-blocking layer to perform more effective carrier transport. Surface defects and grain boundaries of ZnO are also reduced, because the ZnO crystal quality is improved by CGS QDs. Moreover, the intrinsic dipole moments of QDs further induce rapid charge separation. The short circuit current and fill factor of the OPV are improved by 9.43% and 3.38% after CGS QDs modification, resulted in an overall power conversion efficiency from 3.32% up to 4.11% for a power conversion enhancement 23.80%. Second, flexible electronics is an emerging and promising technology for next generation of optoelectronic devices. Therefore, carbon fibers/carbon nanotubes/organic molecules composites are synthesized as an organic photovoltaic and a shield. The device generates photocurrent and the EMI shielding effectiveness are around 20 dB in the domain of 0~2 GHz (mobile phone system), implying that they can be used commercially as shielding materials, which prevents microwave damages from mobile phones. The properties of wearable, portable, and flexible induce them possess a high capability to be utilized. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:18:53Z (GMT). No. of bitstreams: 1 ntu-101-R99941101-1.pdf: 2973867 bytes, checksum: d0e5d26783ad218f5d9f047ba31c70eb (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II Abstract IV Table of contents VI List of Figures VIII Chapter 1 Introduction 1 1.1 An alternative energy source..... ........1 1.2 Benefits of organic solar cells.............2 1.3 Organic semiconductors......................3 1.4 Principles of organic solar cell............6 Reference... ....................................10 Chapter2 Enhancement in Conversion Efficiency of Inverted Inorganic-Organic Hybrid Solar Cell Based on CuGaSe2 Quantum Dots..........................................11 2.1 Introduction...... .............................11 2.2 Experiment............... .....................13 2.3 Results and discussion..................... ..14 2.4 Summery..................................... ..27 Reference.............................. ............30 Chapter3 Wearable Photovoltaic Devices with Electromagnetic Interference Shielding and Stealth Features..............................................32 3.1 Introduction...................................32 3.2 Experiment.....................................34 3.3 Results and discussion.........................35 3.4 Summery........................................46 Reference...........................................47 Resume ....... .....................................51 | |
| dc.language.iso | en | |
| dc.subject | 氧化鋅結晶性 | zh_TW |
| dc.subject | 銅銦鎵量子點 | zh_TW |
| dc.subject | 吩 | zh_TW |
| dc.subject | 銅酞 | zh_TW |
| dc.subject | 聚3-己基噻 | zh_TW |
| dc.subject | 菁 | zh_TW |
| dc.subject | 有機太陽能電池 | zh_TW |
| dc.subject | 碳纖維 | zh_TW |
| dc.subject | 電磁波屏蔽 | zh_TW |
| dc.subject | EMI shielding | en |
| dc.subject | ZnO crystal quality | en |
| dc.subject | CuPc | en |
| dc.subject | P3HT | en |
| dc.subject | organic solar cells | en |
| dc.subject | carbon fibers | en |
| dc.subject | CGS QDs | en |
| dc.title | 屏蔽電磁波和紅外線可穿著式光伏元件 | zh_TW |
| dc.title | Wearable Photovoltaic Devices with Electromagnetic Interference Shielding and Stealth Features | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹逸民(I-Min Chan),徐文光(Wen-Kuang Hsu),邱天隆(Tien-Lung Chiu),李敏鴻(Min-Hung Lee) | |
| dc.subject.keyword | 聚3-己基噻,吩,銅銦鎵量子點,氧化鋅結晶性,銅酞,菁,有機太陽能電池,碳纖維,電磁波屏蔽, | zh_TW |
| dc.subject.keyword | CGS QDs,ZnO crystal quality,CuPc,P3HT,organic solar cells,carbon fibers,EMI shielding, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
