請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63769完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇銘嘉 | |
| dc.contributor.author | Yao-Hsing Wang | en |
| dc.contributor.author | 王耀興 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:18:41Z | - |
| dc.date.available | 2022-08-17 | |
| dc.date.copyright | 2012-09-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-17 | |
| dc.identifier.citation | Reference-part 1
1. Braunwald E. Clinical efforts to reduce myocardial infarct size--the next step. J Cardiovasc Pharmacol Ther. 2011;16:349-353 2. Antman E, Bassand JP, Klein W, Ohman M, Lopez Sendon JL, Rydén L, Simoons M, Tendera M. Myocardial infarction redefined--a consensus document of the joint european society of cardiology/american college of cardiology committee for the redefinition of myocardial infarction: The joint european society of cardiology/american college of cardiology committee. Journal of the American College of Cardiology. 2000;36:959 3. Murata M, Akao M, O’Rourke B, Marbán E. Mitochondrial atp-sensitive potassium channels attenuate matrix ca2+ overload during simulated ischemia and reperfusion. Circulation research. 2001;89:891-898 4. Yoshiyama M, Takeuchi K, Hanatani A, Kim S, Omura T, Toda I, Teragaki M, Akioka K, Iwao H, Yoshikawa J. Differences in expression of sarcoplasmic reticulum ca2+-atpase and na+-ca2+ exchanger genes between adjacent and remote noninfarcted myocardium after myocardial infarction. Journal of molecular and cellular cardiology. 1997;29:255-264 5. Loor G, Schumacker P. Role of hypoxia-inducible factor in cell survival during myocardial ischemia–reperfusion. Cell Death & Differentiation. 2008;15:686-690 6. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. New England Journal of Medicine. 2007;357:1121-1135 7. Gottlieb RA. Cell death pathways in acute ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther. 2011;16:233-238 8. Liesa M, Luptak I, Qin F, Hyde BB, Sahin E, Siwik DA, Zhu Z, Pimentel DR, Xu XJ, Ruderman NB, Huffman KD, Doctrow SR, Richey L, Colucci WS, Shirihai OS. Mitochondrial transporter atp binding cassette mitochondrial erythroid is a novel gene required for cardiac recovery after ischemia/reperfusion. Circulation. 2011;124:806-813 9. Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovascular research. 2004;61:372-385 10. Sutton MGSJ, Sharpe N. Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation. 2000;101:2981-2988 11. Sack MN, Murphy E. The role of comorbidities in cardioprotection. J Cardiovasc Pharmacol Ther. 2011;16:267-272 12. Perrelli MG, Pagliaro P, Penna C. Ischemia/reperfusion injury and cardioprotective mechanisms: Role of mitochondria and reactive oxygen species. World J Cardiol. 2011;3:186-200 13. Jaeschke H, Woolbright BL. Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species. Transplant Rev (Orlando). 2012;26:103-114 14. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon III RO, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL. Markers of inflammation and cardiovascular disease. Circulation. 2003;107:499-511 15. Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio-Pulkki LM. Apoptosis in human acute myocardial infarction. Circulation. 1997;95:320-323 16. Palojoki E, Saraste A, Eriksson A, Pulkki K, Kallajoki M, Voipio-Pulkki LM, Tikkanen I. Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. American Journal of Physiology-Heart and Circulatory Physiology. 2001;280:H2726-H2731 17. Kurrelmeyer KM, Michael LH, Baumgarten G, Taffet GE, Peschon JJ, Sivasubramanian N, Entman ML, Mann DL. Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proceedings of the National Academy of Sciences. 2000;97:5456 18. Thompson PL, Fletcher EE, Katavatis V. Enzymatic indices of myocardial necrosis: Influence on short-and long-term prognosis after myocardial infarction. Circulation. 1979;59:113-119 19. Hutchins GM, Bulkley BH. Infarct expansion versus extension: Two different complications of acute myocardial infarction. The American journal of cardiology. 1978;41:1127-1132 20. Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM. Inhibiting mitochondrial permeability transition pore opening: A new paradigm for myocardial preconditioning? Cardiovascular research. 2002;55:534-543 21. Gateau-Roesch O, Argaud L, Ovize M. Mitochondrial permeability transition pore and postconditioning. Cardiovascular research. 2006;70:264-273 22. Pagliaro P, Moro F, Tullio F, Perrelli MG, Penna C. Cardioprotective pathways during reperfusion: Focus on redox signaling and other modalities of cell signaling. Antioxidants & redox signaling. 2011;14:833-850 23. Baines CP. How and when do myocytes die during ischemia and reperfusion: The late phase. J Cardiovasc Pharmacol Ther. 2011;16:239-243 24. Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: United at reperfusion. Pharmacology & therapeutics. 2007;116:173-191 25. Vinten-Johansen J, Zhao ZQ, Jiang R, Zatta AJ, Dobson GP. Preconditioning and postconditioning: Innate cardioprotection from ischemia-reperfusion injury. Journal of applied physiology. 2007;103:1441-1448 26. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM. Postconditioning: A form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-akt pathway. Circulation research. 2004;95:230-232 27. Valen G, Vaage J. Pre–and postconditioning during cardiac surgery. Basic research in cardiology. 2005;100:179-186 28. Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Gattullo D, Losano G, Pagliaro P. Post–conditioning induced cardioprotection requires signaling through a redox–sensitive mechanism, mitochondrial atp–sensitive k+ channel and protein kinase c activation. Basic research in cardiology. 2006;101:180-189 29. Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: A common target for both ischemic preconditioning and postconditioning. Trends in cardiovascular medicine. 2005;15:69-75 30. Otani H. The role of nitric oxide in myocardial repair and remodeling. Antioxidants & redox signaling. 2009;11:1913-1928 31. Lefer AM, Lefer DJ. The role of nitric oxide and cell adhesion molecules on the microcirculation in ischaemia-reperfusion. Cardiovascular research. 1996;32:743-751 32. Matheis G, Sherman MP, Buckberg GD, Haybron DM, Young HH, Ignarro LJ. Role of l-arginine-nitric oxide pathway in myocardial reoxygenation injury. American Journal of Physiology-Heart and Circulatory Physiology. 1992;262:H616-H620 33. Hausenloy DJ, Yellon DM. Reperfusion injury salvage kinase signalling: Taking a risk for cardioprotection. Heart failure reviews. 2007;12:217-234 34. Gross ER, Hsu AK, Gross GJ. The jak/stat pathway is essential for opioid-induced cardioprotection: Jak2 as a mediator of stat3, akt, and gsk-3β. American Journal of Physiology-Heart and Circulatory Physiology. 2006;291:H827-H834 35. Lacerda L, Somers S, Opie LH, Lecour S. Ischaemic postconditioning protects against reperfusion injury via the safe pathway. Cardiovascular research. 2009;84:201-208 36. Raedschelders K, Ansley DM, Chen DD. The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol Ther. 2012;133:230-255 37. Hill MF, Singal PK. Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. The American journal of pathology. 1996;148:291 38. Heusch G, Post H, Michel MC, Kelm M, Schulz R. Endogenous nitric oxide and myocardial adaptation to ischemia. Circulation research. 2000;87:146-152 39. Takano H, Tang XL, Qiu Y, Guo Y, French BA, Bolli R. Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant-sensitive mechanism. Circulation research. 1998;83:73-84 40. Saito T, Hu F, Tayara L, Fahas L, Shennib H, Giaid A. Inhibition of nos ii prevents cardiac dysfunction in myocardial infarction and congestive heart failure. American Journal of Physiology-Heart and Circulatory Physiology. 2002;283:H339-H345 41. Hibi K, Ishigami T, Tamura K, Mizushima S, Nyui N, Fujita T, Ochiai H, Kosuge M, Watanabe Y, Yoshii Y. Endothelial nitric oxide synthase gene polymorphism and acute myocardial infarction. Hypertension. 1998;32:521-526 42. Aragon JP, Condit ME, Bhushan S, Predmore BL, Patel SS, Grinsfelder DB, Gundewar S, Jha S, Calvert JW, Barouch LA, Lavu M, Wright HM, Lefer DJ. Beta3-adrenoreceptor stimulation ameliorates myocardial ischemia-reperfusion injury via endothelial nitric oxide synthase and neuronal nitric oxide synthase activation. J Am Coll Cardiol. 2011;58:2683-2691 43. Germack R, Dickenson J. Adenosine triggers preconditioning through mek/erk1/2 signalling pathway during hypoxia/reoxygenation in neonatal rat cardiomyocytes. Journal of molecular and cellular cardiology. 2005;39:429-442 44. Hu Y, Chen X, Pan TT, Neo KL, Lee SW, Khin ESW, Moore PK, Bian JS. Cardioprotection induced by hydrogen sulfide preconditioning involves activation of erk and pi3k/akt pathways. Pflügers Archiv European Journal of Physiology. 2008;455:607-616 45. Schwartz LM, Lagranha CJ. Ischemic postconditioning during reperfusion activates akt and erk without protecting against lethal myocardial ischemia-reperfusion injury in pigs. American Journal of Physiology-Heart and Circulatory Physiology. 2006;290:H1011-H1018 46. Hattori R, Maulik N, Otani H, Zhu L, Cordis G, Engelman RM, Siddiqui M, Das DK. Role of stat3 in ischemic preconditioning. Journal of molecular and cellular cardiology. 2001;33:1929-1936 47. Ku HC, Chen WP, Su MJ. Dpp4 deficiency preserves cardiac function via glp-1 signaling in rats subjected to myocardial ischemia/reperfusion. Naunyn Schmiedebergs Arch Pharmacol. 2011;384:197-207 48. Colletti L, Remick D, Burtch G, Kunkel S, Strieter R, Campbell Jr D. Role of tumor necrosis factor-alpha in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat. Journal of Clinical Investigation. 1990;85:1936 49. Hayashida K, Sano M, Ohsawa I, Shinmura K, Tamaki K, Kimura K, Endo J, Katayama T, Kawamura A, Kohsaka S. Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia–reperfusion injury. Biochemical and biophysical research communications. 2008;373:30-35 50. Betz B, Schneider R, Kress T, Schick MA, Wanner C, Sauvant C. Rosiglitazone affects nitric oxide synthases and improves renal outcome in a rat model of severe ischemia/reperfusion injury. PPAR Res. 2012;2012:219319 51. Calvert JW, Condit ME, Aragon JP, Nicholson CK, Moody BF, Hood RL, Sindler AL, Gundewar S, Seals DR, Barouch LA, Lefer DJ. Exercise protects against myocardial ischemia-reperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling: Role of nitrite and nitrosothiols. Circ Res. 2011;108:1448-1458 Reference-part 2 1. Wongsawatkul O, Prachayasittikul S, Isarankura-Na-Ayudhya C, Satayavivad J, Ruchirawat S, Prachayasittikul V. Vasorelaxant and antioxidant activities of spilanthes acmella murr. Int J Mol Sci. 2008;9:2724-2744 2. Bae SS, Ehrmann BM, Ettefagh KA, Cech NB. A validated liquid chromatography–electrospray ionization–mass spectrometry method for quantification of spilanthol in spilanthes acmella (l.) murr. Phytochemical Analysis. 2010;21:438-443 3. Savadi R, Yadav R, Yadav N. Study on immunomodulatory activity of ethanolic extract of spilanthes acmella murr. Leaves. Indian J Nat Prod Res. 2010;1:204-207 4. Hatasa S. Spilanthol-containing compositions for oral use. 1973 5. Chakraborty A, Devi R, Rita S, Sharatchandra K, Singh TI. Preliminary studies on antiinflammatory and analgesic activities of spilanthes acmella in experimental animal models. Indian journal of pharmacology. 2004;36:148 6. Wu L, Fan N, Lin M, Chu I, Huang S, Hu CY, Han S. Anti-inflammatory effect of spilanthol from spilanthes acmella on murine macrophage by down-regulating lps-induced inflammatory mediators. Journal of agricultural and food chemistry. 2008;56:2341-2349 7. Sharma V, Boonen J, Chauhan NS, Thakur M, De Spiegeleer B, Dixit VK. Spilanthes acmella ethanolic flower extract: Lc-ms alkylamide profiling and its effects on sexual behavior in male rats. Phytomedicine. 2011;18:1161-1169 8. Ramsewak RS, Erickson AJ, Nair MG. Bioactive n-isobutylamides from the flower buds of spilanthes acmella. Phytochemistry. 1999;51:729-732 9. Prachayasittikul S, Suphapong S, Worachartcheewan A, Lawung R, Ruchirawat S, Prachayasittikul V. Bioactive metabolites from spilanthes acmella murr. Molecules. 2009;14:850-867 10. Holetz FB, Pessini GL, Sanches NR, Cortez DAG, Nakamura CV, Dias Filho BP. Screening of some plants used in the brazilian folk medicine for the treatment of infectious diseases. Memórias do Instituto Oswaldo Cruz. 2002;97:1027-1031 11. Pendse G, Bhide B, Phalnikar N. Investigation of new plant larvicides with special reference to spilanthes acmella. Journal of the Malaria institute of India. 1946;6:321 12. Pandey V, Chopra M, Agrawal V. In vitro isolation and characterization of biolarvicidal compounds from micropropagated plants of spilanthes acmella. Parasitology research. 2011;108:297-304 13. Rani S, Murty S. Antifungal potential of flower head extract of spilanthes acmella linn. African Journal of Biomedical Research. 2009;9 14. Phongpaichit S, Subhadhirasakul S, Wattanapiromsakul C. Antifungal activities of extracts from thai medicinal plants against opportunistic fungal pathogens associated with aids patients. Mycoses. 2005;48:333-338 15. Bae SS, Ehrmann BM, Ettefagh KA, Cech NB. A validated liquid chromatography-electrospray ionization-mass spectrometry method for quantification of spilanthol in spilanthes acmella (l.) murr. Phytochem Anal. 2010;21:438-443 16. Ratnasooriya WD, Pieris KP, Samaratunga U, Jayakody JR. Diuretic activity of spilanthes acmella flowers in rats. J Ethnopharmacol. 2004;91:317-320 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63769 | - |
| dc.description.abstract | 中文摘要-第一部分
組織缺血後再灌流引起的損傷,在臨床上是常見且已被證實的,病人在施行心血管手術或器官移植後、或當病人遭受心肌梗塞、冠狀動脈阻塞及缺血性中風的情況下,都會導致組織再灌流的損傷,並影響到病人的預後。 (+)-Thaliporphine是一種結構為phenolic aporphine的生物鹼,來自樟科植物,已經經實驗證實可經由抑制鈉電流 (INa)、瞬間外流鉀電流 (Ito)產生抗心律不整活性、抗氧化及提高血中NO含量等途徑,來達到保護心臟並且減少缺血再灌流的傷害。TM1-1、TM1-1 DP 這兩種化合物是 (+)-Thaliporphine的衍生物,本篇主要在評估這兩個衍生物是否具有對於心臟缺血再灌流的保護效果。 在活體心臟缺血1小時再灌流2小時模式中,使用成年雄性、重約250~350公克的Sprague Dawley (SD) 品系大鼠,來測試TM 1-1(50μg/kg)與TM 1-1 DP(50μg/kg) 的心臟保護效果,紀錄大鼠的LVSP、心跳、心電圖、心電圖、+dP/dt、SV、EF%、ESPVR、EDPVR、PRSW與心肌梗塞壞死區域(IS)的變化,且抽血測量血清中LDH、CPK、CK-MB與NO的總量;另外收取心肌缺血部位組織,利用西方點墨法測定相關蛋白質表現量。 實驗結果顯示:TM 1-1與TM 1-1DP在50μg/kg的劑量下,有減少梗塞壞死面積與保存心臟收縮功能讓心臟具有較佳調控前負荷變化的能力,並能增加血中NO的總量和活化eNOS與RISK途徑且能減少細胞凋亡前驅物質Caspase 3的表現,整體來說,TM 1-1與TM 1-1 DP在低劑量下就具有對缺血再灌流損傷心臟功能保護效果。 摘要-第二部分 先前的研究報告發現,東南亞國家與非洲國家經常使用的一種辛辣香料Spilanthes acmella(Paracress)具有利尿、抗菌和消炎等活性,且發現這種辛辣香料在很低量就具有很強的生物活性。在我們的研究中我們嘗試去評估Spilanthes acmella(Paracress)的丁醇層萃取物在大鼠心臟功能和離體心臟血管肌肉組織的心血管效應。 實驗對象為Sprague-Dawley(SD)大鼠,我們使用離體心臟和降主動脈血管平滑肌肌肉來研究直接的藥效作用,測試藥物對於肌肉收縮力的影響。研究中發現:在心臟肌肉組織(N= 7),其收縮力會隨著藥物濃度的累加積累而顯著降低,尤其是在左心房肌肉組織,可以抑制大約50%的收縮力;右心房的自主心跳速率會在某一特定濃度範圍會受到抑制。而在離體降主動脈平滑肌肉組織實驗中(N =5),血管放鬆作用會隨萃取物濃度增加而增強;如在血管實驗前先以L-NAME(10-5 M)前處理,則藥物增強血管舒張作用的效果會減弱,且透過去除血管內皮的動作,也會使藥物血管舒張作用減弱。 此外,我們探討了萃取物對phenylephrine誘導平滑肌收縮實驗的影響,發現藥物組比起對照組有較高的EC50。代表此萃取物可能會對血管放鬆有關的受體有作用(如甲型交感神經受器阻斷作用等)。為了比較動物體內和體外試驗的結果,我們注入不同劑量的萃取物(IP)發現的+dP / dt,當給予萃取物劑量為10毫克/公斤時,左心室收縮壓和心跳速率抑制效用最強。 總結來說,Spilanthes acmella的丁醇萃取物是一個強效的血管擴張劑,也表現出一些直接抑制心肌收縮力的藥效作用。六神花,這個在東南亞與非洲地區的人們日常生活經常使用的辛辣香料,可能存在很強的心血管系統抑制活性,且可能在某些特殊狀況下是存在有傷害性,這個課題值得我們深入探討研究。 | zh_TW |
| dc.description.abstract | Abstract-Part1
Ischemia-reperfusion injury in clinical practice is common and has been confirmed. The patients in the implementation of cardiovascular surgery or organ transplant, or coronary angioplasty will result in reperfusion injury, and affect the patient's prognosis. (+)-Thaliporphine is a structure of phenolic alkaloid from the Lauraceae, has been reported to excert anti-arrhythmic activity through the inhibition of the sodium current of NO (INa) and transient outward potassium current (Ito), as well as to protect myocardium from I/R injury via antioxidant activity and increasing the content of NO in the blood, TM 1-1 and TM 1-1 DP are derivatives of (+)-thaliporphine. This study aimed to assess the cardiac protective activity of both compounds in ischemia/reperfusion. The adult male, weighing about 250 to 350 g Sprague Dawley (SD) strain rats were subjected to one hour cardiac ischemia followed by two hours reperfusion. TM 1-1 (50μg/kg) and TM 1-1 DP (50μg/kg) were intravenously infused at 10 minutes before the start of reperfusion. Rat’s LVSP, heart rate, electrocardiogram, +dP/dt, SV, %EF, ESPVR, EDPVR and PRSW were recorded and myocardial infarct size were measured. The blood was collected and the level of LDH, CPK, CK-MB and NO were measured; a separated tissue of myocardial ischemia zone was used to determine the expression of related proteins by Western blot. The results of this study revealed that 50 μg/kg of TM 1-1 and TM 1-1 DP reduced infarct size and increase the preload-recruitable stroke work of I/R rat heart. Biochemical study of the ischemic myocardium showed that the treatment with both agents resulted in an increase expression of p-AKT, p-eNOS, p-ERK and a reduced expression of p-P38 and Caspase 3. In conclusion, TM 1-1 and TM 1-1 DP exerts similar cardiac protection against I/R injury of rat hearts. Abstract-part2 Previous studies have found out that the Spilanthes acmella (Paracress) ,a spice which has been used as a medicine for toothaches and analgesic, has diuretic, antibacterial and anti-inflammatory activities. In our study, we try to access the cardiovascular effects of the butyl alcohol extracts of S. acmella in vivo and in vitro. The isolated heart and descending aorta muscles of Sprague-Dawley (S.D) rats were used to examine the effect of drug on muscle contractility. In the cardiac isolated muscle (n=7),the extracts dose-dependently decreased cardiac contractility with accumulated increase of drug concentrations, especially in left atrial muscle, and heart rate of isolated right heart has same result. And in the descending aorta (n=5), the vaso-relaxation effect of the extract increased concentration dependently. The vassal relaxant effect was blocked by L-NAME (10 -5 M) pretreatment and diminished in denuded smooth muscle. In addition, we examine the effect of the extract on phenylephrine-induced smooth muscle contraction. The drug groups have higher EC50 of phenylephrine than control group. Therefore, in order to compared the results in vivo and in vitro, we inject different dose of the extract (i.p.) was found that the +dP/dt, left ventricular systolic pressure and heart rate was suppressed by 10 mg/kg of the extract. To sum up, the Spilanthes acmella is a potent vasodilator, and also exhibits some direct inhibition of cardiac contractility. This result subjected that the extract from the common spicy herb used in south-east Asia may exert some inhibitory effect on cardiovascular system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:18:41Z (GMT). No. of bitstreams: 1 ntu-101-R99443015-1.pdf: 4038478 bytes, checksum: 8aee3e6eb54a0b98e3ffe28bbb292192 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 第一章 緒論 1
Figure 0 1 2 Figure 0 2 3 再灌流損傷 (Reperfusion injury) 3 Figure 0 3 5 心肌缺氧-再灌流的病理機制 (Pathology) 5 發炎反應 (Inflammatory process) 5 Figure 0 4 7 1. 氧化壓力 (Oxidative stress) 7 Figure 0 5 9 2. 鈣離子過載 (Calcium overload) 10 Figure 0 7 11 3. 缺血再灌流引發之細胞死亡 11 Figure 0 8 12 Figure 0 9 13 心肌缺血-再灌流傷害的保護 (Cardioprotection) 13 Figure 0 10 14 1. 抗氧化製劑 (Antioxident) 15 2. RISK 與 SAFE 細胞傳遞途徑的保護作用 15 Figure 0 11 17 研究動機與方向 17 第二章 實驗方法與材料 20 一.實驗試劑 20 二.實驗動物 21 三. 活體大鼠冠狀動脈結紮-再灌流模式 22 四. 心室異位性活動之紀錄(Ventricular ectopic activity) 24 五.心臟梗塞面積之測定 24 六.血清中之Creatine Kinase—MB (CK-MB) 25 七.血清中之Lactate dehydrogenase (LDH) activity 之測定 26 八.血清中之Nitric Oxide (NO)含量測定 27 九.蛋白質萃取 28 Figure 0 12 29 十.蛋白質濃度測定 29 十一.SDS-PAGE電泳(gel electrophoresis)分析 30 十二.藥物安全性測試 31 十三.實驗數據分析與統計 31 第三章 實驗結果 32 一. TM 1-1與TM 1-1 DP缺血再灌流模式之保護作用 32 1. TM1-1與TM 1-1 DP 50 μg/kg 對LVSP、+dP/dt、心跳、SV(Stroke volume)、EF%、LVEDP、Ved的影響 32 2. TM1-1與TM 1-1 DP對ESPVR、EDPVR與ERSW的影響。 33 3. TM1-1對於心臟缺血區域與梗塞壞死區域比例的影響 33 4. TM1-1 50μg/kg對於 VT與VF發生總時間長短的影響 34 二. TM1-1與TM1-1 DP 大劑量毒性測試 35 三. TM1-1與TM1-1 DP血清學試驗 35 1. 血中Nitric oxides、LDH、CPK及CK-MB濃度。 35 四. TM 1-1與TM 1-1 DP對於心臟組織中蛋白質表現量的影響 36 1. p-eNOS與iNOS表現量影響 36 2. p-ERK、p-AKT與p-P38表現量影響 36 3. VCAM、ICAM、TNF-α與Caspase 3表現量影響。 36 第四章 數據圖表與表格 37 Figure 1 1 37 Figure 1 2 38 Figure 1 3 39 Figure 1 4 39 Figure 1 5 40 Figure 2 1 41 Figure 2 2 41 Figure 2 3 42 Figure 3 43 Figure 4 43 Figure 5. 44 Figure 6-1. 45 Figure 6-2. 46 Figure 6-3 47 Table 1 1 48 Table 2 1 49 Table 3 1 50 Table 4 1 51 第五章 附錄圖表 52 一. 活體大鼠高劑量TM 1-1與TM 1-1 DP測試 52 附錄 1 1 53 附錄 1 2 54 附錄 1 3 54 第六章 討論 55 TM 1-1與TM 1-1 DP在活體大鼠冠狀動脈缺血再灌流模式之保護作用 55 1. 藥物對於LVSP、+dP/dt、%EF、SV與HR的影響 55 2. 藥物對於ESPVR、EDPVR與PRSW的影響 56 3. TM 1-1對於心臟缺血再灌流傷害的梗塞壞死面積與嚴重心律不整(VT與VF)發生總時間的影響 57 4. TM 1-1與TM 1-1 DP對於血清中Total creatine phosphokinase (CPK)、Creatine kinase—MB與Lactate dehydrogenase(LDH) Activity之影響 57 5. TM1 1-1與TM 1-1 DP對於NO產量的影響 58 6. TM 1-1與TM 1-1 DP對NOS蛋白表現量的影響 59 7. TM 1-1 與TM 1-1 DP對於RISK Pathway與發炎反應途徑的影響 60 第七章 結論 62 參考文獻 63 目錄 Abstract 68 摘要 69 第一章 緒論 (Introduction) 71 圖 0 1 72 第二章 實驗方法 (Material and methods) 73 一. 實驗動物 73 二. 活體大鼠冠狀動脈結紮-再灌流模式 73 三. 心臟梗塞面積之測定 74 四. 離體大鼠心臟組織收縮力之測量 75 五. 離體大鼠胸主動脈血管張力測試 76 六. 活體大鼠心臟功能測試 77 七.實驗數據分析與統計 77 第三章 實驗結果 (Result) 78 一. 藥物如何影響缺血區域、梗塞區域。 78 二. 左心房、右心房與右心室的收縮力變化和右心房的自主心跳速率變化。 78 三. 血管張力的變化。 79 四. LVSP、HR與+dP/dt的變化。 80 第四章.統計圖表 (Figure and Table) 81 Figure 1 1 81 Figure 1 2 81 Figure 2 1 82 Figure 2 2 82 Figure 3 1 83 Figure 3 2 83 Figure 4 1 84 Figure 4 2 84 Figure 4 3 85 Table 1 1 86 Table 3 1 86 Table 3 2 87 Table 3 3 87 Table 4 1 88 第五章 討論 (Discussion)與結論(Conclusion) 89 圖 0 1 90 Reference 91 | |
| dc.language.iso | zh-TW | |
| dc.subject | TM1-1 | zh_TW |
| dc.subject | TM1-1 DP | zh_TW |
| dc.subject | 心臟缺血 | zh_TW |
| dc.subject | 再灌流傷害 | zh_TW |
| dc.subject | 六神花 | zh_TW |
| dc.subject | TM1-1 | en |
| dc.subject | TM1-1 DP | en |
| dc.subject | Heart ischemia | en |
| dc.subject | Reperfusion injury | en |
| dc.subject | Spilanthes acmella | en |
| dc.title | TM1-1,TM1-1 DP與六神花萃取物在大鼠心臟缺血-再灌流模式之心血管作用評估 | zh_TW |
| dc.title | Evaluation of the cardiovascular effects of TM1-1, TM1-1 DP and flowers extract of Spilanthes acmella on a model of rats’ heart ischemia-reperfusion. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林正一,顏茂雄,陳文彬 | |
| dc.subject.keyword | TM1-1,TM1-1 DP,心臟缺血,再灌流傷害,六神花, | zh_TW |
| dc.subject.keyword | TM1-1,TM1-1 DP,Heart ischemia,Reperfusion injury,Spilanthes acmella, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
