請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63762
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李百祺(Pai-Chi Li) | |
dc.contributor.author | Bao-Yu Hsieh | en |
dc.contributor.author | 謝寶育 | zh_TW |
dc.date.accessioned | 2021-06-16T17:18:29Z | - |
dc.date.available | 2012-08-20 | |
dc.date.copyright | 2012-08-20 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-17 | |
dc.identifier.citation | [1] S. Mendis, P. Puska, and B. Norrving, “Global atlas on cardiovascular disease prevention and control,” WHO, 2011.
[2] M. Naghavi, P. Libby, E. Falk et al., “From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II,” Circulation, 108(15), 1664-1672, 2003. [3] L.H. Arroyo, R.T. Lee, “Mechanisms of plaque rupture: mechanical and biologic interactions,” Cardiovasc. Res., 41(2), 369-375, 1999. [4] E. Falk, P.K. Shah, V. Fuster, “Coronary plaque disruption,” Circulation, 92, 657- 671, 1995. [5] R. Virmani, F.D. Kolodgie, A.P. Burke, A.V. Finn, H.K. Gold, T.N. Tulenko, S.P. Wrenn, J. Narula, “Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage,” Arterioscler. Thromb. Vasc. Biol., 25, 2054-2061, 2005. [6] C. Pasterkamp, and E. Falk, “Atherosclerotic plaque rupture: an overview,” Journal of Clinical and Basic Cardiology, 3(2), 81-86, 2000. [7] R.T. Lee, and P. Libby, “The unstable atheroma,” Arterioscler. Thromb. Vasc. Biol., 17, 1859-1867, 1997. [8] S. Glagov, E. Weisenberg, C.K. Zarins, R. Stankunavicious, and G.J. Kolettis, “Compensatory enlargement of human atherosclerotic coronary arteries,” N. Engl. J. Med., 316, 1371-1375, 1987. [9] S.E. Nissen, and P. Yock, “Intravascular ultrasound: novel pathophysiological insights and current clinical applications,” Circulation, 103, 604-616, 2001. [10] C.J. White, S.R. Ramee, T.J. Collins, J.P. Murgo, “Coronary angioscopy,” Tex. Heart Inst. J., 22, 20-25, 1995. [11] Z.A. Fayad, V. Fuster, K. Nikolaou, C. Becker, “Computed tomography and magnetic resonance imaging for noninvasive coronary angiography and plaque imaging: Current and Potential Future concept,” Circulation, 106, 2026-2034, 2002. [12] Z.A. Fayad, V. Fuster, “Clinical imaging of the high-risk or vulnerable atherosclerotic plaque,” Circulation Res., 89, 305-316, 2001. [13] J.M. Serfaty, L. Chaabane, A. Tabib, J.M. Chevallier, A. Briguet, P.C. Douek, “Atherosclerotic plaques: classification and characterization with T2-weighted high-spatial-resolution MR imaging: an in vitro study,” Radiology, 219,403–410, 2001. [14] M. Shinnar, J.T. Fallon, S. Wehrli, M. Levin, D. Dalmacy, Z.A. Fayad, J.J. Badimon, M. Harrington, E. Harrington, V. Fuster, “The diagnostic accuracy of ex vivo MRI for human atherosclerotic plaque characterization,” Arterioscler Thromb Vasc Biol. 19,2756–2761,1999. [15] T. Hiro, C.Y. Leung, S. De Guzman, V.J. Cajozzo, A.R. Farvid, H. Karimi, R.H. Helfant, J. Tobis, “Are soft echoes really soft? Intravascular ultrasound assessment of mechanical properties in human atherosclerotic tissue,” Am Heart J., 133,1–7, 1997. [16] B.J. Kimura, V. Bhargava, A.N. DeMaria, “Value and limitations of intravascular ultrasound imaging in characterizing coronary atherosclerotic plaque,” Am Heart J., 130, 386–396, 1995. [17] B.N. Potkin, A.L. Bartorelli, J.M. Gessert, R.F. Neville, Y. Almagor, W.C. Roberts, M.B. Leon, “Coronary artery imaging with intravascular high-frequency ultrasound,” Circulation, 81, 1575–1585, 1990. [18] F. Prati, E. Arbustini, A. Labellarte, B. Dal Bello, L. Somariva, M.T. Mallus, A. Pagano, A. Boccanelli, “Correlation between high frequency intravascular ultrasound and histomorphology in human coronary arteries,“ Heart, 85, 567–570, 2001. [19] C.L. de Korte, M.J. Sierevogel, F. Mastik, C. Strijder, J.A. Schaar, E. Velema, G. Pasterkamp, P.W. Serruys, F.W. van dr Anton, “Identification of atherosclerotic plaque components with intravascular ultrasound elastography in vivo: a Yucatan pig study,” Circulation, 105, 1627–1630, 2002. [20] A. Nair, B.D. Kuban, E.M. Tuzcu, P. Schoenhagen, S.E. Nissen, D.G. Vince, “Coronary plaque classification with intravascular ultrasound radiofrequency data analysis,” Circulation, 106, 2200-2206, 2002. [21] S.G. Carlier, K. Tanaka, A. Katouzian, “Atherosclerotic plaque characterization from radiofrequency ultrasound signal processing,” US Cardiovascular Disease, 54-56, 2007. [22] N. Komiyama, G.J. Berry, M.L. Kolz, A. Oshima, J.A. Metz, P. Preuss, A.F. Brisken, M.P. Moore, P.G. Yock, P.J. Fitzgerald, “Tissue characterization of atherosclerotic plaques by intravascular ultrasound radiofrequency signal analysis: an in vitro study of human coronary arteries,” Am Heart J., 140, 565–574, 2000. [23] J.C. Machado, F.S. Foster, “Ultrasonic integrated backscatter coefficient profiling of human coronary arteries in vitro,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 48, 17-27, 2001. [24] M. Kawasaki, H. Takatsu, T. Noda, K. Sano, Y. Ito, K. Hayakawa, K. Tsuchiya, M. Arai, K. Nishigaki, G. Takemura, S. Minatoguchi, T. Fujiwara, H. Fujiwara, “In vivo quantitative tissue characterization of human coronary arterial plaques by use of integrated backscatter intravascular ultrasound and comparison with angioscopic findings,” Circulation, 105, 2487–2492, 2002. [25] H. Yabushita, B.E. Bouma, S.L. Houser, H.T. Aretz, I.K. Jang, K.H. Schlendorf, C.R. Kauffman, M. Shishkov, D.H. Kang, E.F. Halpern, G.J. Tearney, “Characterization of human atherosclerosis by optical coherence tomography,” Circulation, 106, 1640-1645, 2002. [26] W.C. Kuo, N.K. Chou, C. Chou, C.M. Lai, H.J. Huang, S.S. Wang, J.J. Shyu, “Polarization-sensitive optical coherence tomography for imaging human atherosclerosis,” Applied Opt., 46, 2520-2526, 2007. [27] I.K. Jang, G.J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S.L. Houser, H.T. Aretz, E.F. Halpern, B.E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation, 111, 1551-1555, 2005. [28] W. Jaross, V. Neumeister, P. Lattke, D. Schuh,“ Determination of cholesterol in atherosclerotic plaques using near infrared diffuse reflection spectroscopy,” Atherosclerosis, 147,327-337, 1999. [29] T.J. Romer, J.F. Brennan, T.C. Schut, R. Wolthuis, Ria C.M. van den Hoogen, J.J. Emeis, A. van der Laarse, A.V.G. Bruschke, G.J. Puppels, “Raman spectroscopy for quantifying cholesterol in intact coronary artery wall,” Atherosclerosis, 141,117–124, 1998. [30] H.P. Buschman, E.T. Marple, M.L. Wach, B. Bennett, T.C. Bakker Schut, H.A. Bruining, A.V. Bruschke, A. van der Laarse, G.J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem., 72, 3771-3775, 2000. [31] S.W.E. van de Poll, C.L. de Korte, A.F.W. van der Steen, G.J. Puppels, A. van der Laarse, “Coronary atherosclerotic plaque characterization using IVUS elastography and Raman spectroscopy,” IEEE Ultrasonics Symposium, 2000. [32] G.J. Tearney, H. Yabushita, S.L. Houser, H.T. Aretz, I.K. Jang, K.H. Schlendorf, C.R. Kauffman, M. Shishkov, E.F. Halpern, and B.E. Bouma, “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography, ” Circulation, 107, 113-119, 2003. [33] A.G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci., 20, 305-324, 1880. [34] A. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys., 58, 381-431, 1986. [35] G. Gregoire, V. Tournat, D. Mounier, and V. E. Gusev, “Nonlinear photothermal and photoacoustic processes for crack detection,” Eur. Phys. J. Spec. Top., 153, 313-315, 2008. [36] R. Kruger, P. Liu, and C. Appledorn, “Photoacoustic ultrasound (PAUS) – reconstruction tomography”, Med. Phys., 22, 1605-1609, 1995. [37] R.O. Esenaliev, A.A. Karabutov, F.K. Tittel, B.D. Fornage, S. L. Thomsen, C. Stelling, and A.A. Oraevsky, “Laser optoacoustic imaging for breast cancer diagnostics: limit of detection and comparison with x-ray and ultrasound imaging,” Proc. SPIE, 2979, 71-82, 1997. [38] C. G. Hoelen, F.F. de Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett., 23, 648-650, 1998. [39] A.A. Oraevsky, V.A. Andreev, A.A. Karabutov, K.R.D. Fleming, Z. Gatalica, H. Singh, and R.O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE, 3597, 352-363, 1999. [40] R.A. Kruger, K.D. Miller, H.E. Reynolds, W.L. Kiser, D.R. Reinecke, and G.A. Kruger, “Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434MHz-feasibility study,” Radiology, 216, 279-283, 2000. [41] G. Ku, and L. Wang, “Scanning thermoacoustic tomography in biological tissue,” Med. Phys., 27, 1195-1202, 2000. [42] P.C. Beard, “Photoacoustic imaging of blood vessel equivalent phantoms,” Proc. SPIE, 4618, 54-62, 2002. [43] M. Xu, and L.V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum., 77, 041101, 2006. [44] P. Beard, “Biomedical photoacoustic imaging,” Interface Focus, 1, 602-631, 2011. [45] V. E. Gusev, and A. A. Karabutov, Laser Optoacoustics, AIP, New York, 1993. [46] A. A. Oraevsky, and A. A. Karabutov, Biomedical Photonics Handbook, edited by T. Vo-Dinh, CRC, Boca Raton, FL, Chap. 34, 2003. [47] B.T. Cox, J.G. Laufer and P.C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE, 7177, 717713, 2009. [48] A. de la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B.R. Smith, T. Ma, O. Oralkan, Z. Cheng, Z. Chen, H. Dai, B.T. Khuri-Yakub, and S.S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol., 3(9), 557-562, 2008. [49] A. de la Zerda, Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B.T. Khuri-Yakub, X. Chen, H. Dai, and S.S. Gambhir, “Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice,” Nano Lett., 10, 2168-2172, 2010. [50] P.C. Li, S.W. Huang, C.W. Wei, Y.C. Chiou, C.D. Chen, C.R. Wang, “Photoacoustic flow measurements by use of laser-induced shape transitions of gold nanorods,” Opt. Lett., 30(24), 3341-3343, 2005. [51] S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, “Molecular specific optoacoustic imaging with plasmonic nanoparticles,” Opt. Express, 15(11), 6583-6588, 2007. [52] K. Kim, S.W. Huang, S. Ashkenazi, M. O'Donnell, A. Agrawal, N.A. Kotov, M.F. Denny, and M.J. Kaplan, “Photoacoustic imaging of early inflammatory response using gold nanorods,” Appl. Phys. Lett., 90, 223901, 2007. [53] P.C. Li, C.R. Wang, D.B. Hsieh, C.W. Wei, C.K. Liao, C. Poe, S. Jhan, A.A. Ding, and Y.N. Wu, “In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods,” Opt. Express, 16(23), 18605-18615, 2008. [54] B. Wang, P. Joshi, V. Sapozhnikova, J. Amirian, S.H. Litovsky, R. Smalling, K. Sokolov, and S. Emelianov, “Intravascular photoacoustic imaging of macrophages using molecularly targeted gold nanoparticles,” Proc. SPIE, 7564, 75640A, 2010. [55] R.A. Kruger, R.B. Lam, D.R. Reinecke, S.P. Del Rio, and R.P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys., 37, 6096, 2010. [56] C. Kim, T. Erpelding, L. Jankovic, and M.D. Pashley, “Deeply penetration in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express, 1, 335-340, 2010. [57] S. Sethuraman, S.R. Aglyamov, J.H. Amirian, R.W. Smalling, and S.Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 54(5), 978-986, 2007. [58] S. Sethuraman, J.H. Amirian, S.H. Litovsky, R.W. Smalling, and S.Y. Emelianov, “Ex vivo characterization of atherosclerosis using intravascular photoacoustic imaging,” Opt. Express, 15(25), 16657-16666, 2007. [59] T.J. Allen, A. Hall, A. Dhillon, J.S. Owen, and P.C. Beard, “Photoacoustic imaging of lipid rich plaques in human aorta,” Proc. SPIE, 7564, 75640C, 2010. [60] B. Wang, J.L. Su, A.B. Karpiouk, K.V. Sokolov, R.W. Smalling, and S.Y. Emelianov, “Intravascular photoacoustic imaging,” IEEE J. Sel. Top. Quant., 16(3), 588-599, 2010. [61] S. Sethuraman, J.H. Amirian, S.H. Litovsky, R.W. Smalling, and S.Y. Emelianov,“ Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express, 16(5), 3362-3367, 2008. [62] B. Wang, J.L. Su, J. Amirian, S.H. Litovsky, R.W. Smalling, and S.Y. Emelianov, “ Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging,” Opt. Express, 18(5), 4889-4897, 2010. [63] J.L. Su, B. Wang, and S.Y. Emelianov,“ Photoacoustic imaging of coronary artery stent,” Opt. Express, 17(22), 19894-19901, 2009. [64] B. Wang, E. Yantsen, T. Larson, A.B. Karpiouk, S. Sethuraman, J.L. Su, K. Sokolov, and S.Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett., 9(6), 2212-2217. [65] B. Wang, P. Joshi, V. Sapozhnikova, J. Amirian, S.H. Litovsky, R.W. Smalling, K. Sokolov, and S.Y. Emelianov, “ Intravascular photoacoustic imaging of macrophages using molecularly targeted gold nanoparticles,” Proc. of SPIE, 7564, 75640A, 2010. [66] A.B. Karpiouk, B. Wang, and S.Y. Emelianov, “Development of a catheter for combined intravascular ultrasound and photoacoustic imaging,” Rev. of Sci. Instrum., 81, 014901, 2010. [67] K. Jansen, A.F.W. van der Steen, H.M.M. van Beusekom, J.W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett., 36(5), 597-599, 2011. [68] W. Wei, X. Li, Q. Zhou, K.K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt., 16(10), 106001, 2010. [69] Y. Sun, A.J. Chaudhari, M. Lam, H. Xie, D.R. Yankelevich, J. Phipps, J. Liu, M.C. Fishbein, J.M. Cannata, K.K. Shung, and L. Marcu, “Multimodal characterization of compositional, structural and functional features of human atherosclerotic plaques,” Biomed. Opt. Express, 2(8), 2288-2298, 2011. [70] R.J. Zemp, L. Song, R. Bitton, K.K. Shung, and L.V. Wang, “Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer,” Opt. Express, 16(11), 7915-7928, 2008. [71] L. Song, K. Maslov, R. Bitton, K.K. Shung, and L.V. Wang, “Fast 3D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt., 13(5), 054028, 2008. [72] Y.H. Wang, and P.C. Li, “Ultrafast photoacoustic imaging and its application to real-time 3D imaging with improved focusing,” Ultrasonic Imaging, 33(3), 189-196, 2011. [73] B.Y. Hsieh, S.L. Chen, T. Ling, L.J. Guo, and P.C. Li, “Integrated intravascular ultrasound and photoacoustic imaging scan head,” Optics Letter, 35(17), 2892-2894, 2010. [74] Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136.1-2000 (American National Standards nstitute, Inc. 2000). [75] P.C. Li, C.W. Wei, and Y.L. Sheu, “Subband photoacoustic imaging for contrast improvement,” Opt. Express, 16(25), 20215-20226, 2008. [76] S. Ashkenazi, C.Y. Chou, L.J. Guo, and M. O'Donnell, “Ultrasound detection using polymer microring optical resonator,” Appl. Phys. Lett., 85, 5418-5420, 2004. [77] S.W. Huang, S.L. Chen, T. Ling, A. Maxwell, M. O'Donnell, L.J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett., 92, 193509, 2008. [78] C.Y. Chao, S. Ashkenazi, S.W. Huang, M. O'Donnell, L.J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 54(5), 957-965, 2007. [79] J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 47(1), 160–169, 2000. [80] P. C. Beard, and T. N. Mills, “A 2D optical ultrasound array using a polymer film sensing interferometer,” Proc. of IEEE IUS, 1183–1186, 2000. [81] E. Zhang, J. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt., 47(4), 561–577, 2008. [82] H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensor, 10(12), 11248–11258, 2010. [83] V. Wilkens, “Characterization of an optical multilayer hydrophone with constant frequency response in the range from 1 to 75 MHz,” J. Acoust. Soc. Am., 113(3), 1432–1438, 2003. [84] R. Nuster, M. H. C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt., 15(2), 021307, 2010. [85] J.O. Fiering, P. Hultman, W. Lee, E.D. Light, and S.W. Smith, “High-density flexible interconnect for two-dimensional ultrasound array,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 47(3), 764–770, 2000. [86] J.M. Cannata, J.A. Williams, Q. Zhou, T.A. Ritter, and K.K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 53(1), 224–236, 2006. [87] T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett., 79(4), 548–550, 2001. [88] Y. Hou, J.S. Kim, S. Ashkenazi, and M. O’Donnell, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett., 89, 093901, 2006. [89] Y. Hou, J.S. Kim, S. Ashkenazi, S.W. Huang, L.J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducer,” Appl. Phys. Lett., 91, 073507, 2007. [90] F.S. Foster, K.A. Harasiewicz, and M.D. Sherar, “A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers, ” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 47(6), 1363–1371, 2000. [91] P.C. Li, C.W. Wei, and Y.L. Sheu, “Subband photoacoustic imaging for contrast improvement, ” Opt. Express, 16(25), 20215–20226, 2008. [92] K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett., 94(6), 064108, 2009. [93] S. Resink, J. Jose, R. G. H. Willemink, C. H. Slump, W. Steenbergen, T. G. van Leeuwn, and S. Manohar, “Multiple passive element enriched photoacoustic computed tomography,” Opt. Lett., 36(15), 2809–2811, 2011. [94] M. Xu, Y. Xu, and L. H. Wang, “Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries,” IEEE Trans. Biomed. Eng., 50(9), 1086–1099, 2003. [95] Z. Deng, X. Yang, H. Gong, and Q. Luo, “Two-dimensional synthetic-aperature focusing technique in photoacoustic microscopy,” J. Appl. Phys., 109, 104701, 2011. [96] H.W. Baac, T. Ling, A. Ashkenazi, S.W. Huang, L.J. Guo, “Photo-acoustic concave transmitter for generating high frequency focused ultrasound,” Proc. Soc. Photo. Opt. Instrum. Eng., 7564(1), 75642M, 2010. [97] Precision Acoustics, Dorchester, U.K., Piezoelectric PVDF needle hydrophone of 75μm active detection size. http://www.acoustics.co.uk/products/hpm075-1 [98] O. Oralkan, A.S. Ergun, J.A. Johnson, M. Karaman, U. Demirci, K. Kaviani, T. H. Lee, and B.T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducer: next-generation arrays for acoustic imaging?” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 49(11), 1596–1609, 2002. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63762 | - |
dc.description.abstract | 血管內光聲影像可利用組織間吸收光譜之不同藉此分析血管內斑塊成份,而血管內超音波則可提供血管及斑塊之結構性影像,在此研究中,將此光聲影像技術結合血管內超音波使成一雙模式血管內超音波/光聲影像系統,可利用光聲影像鑑別組織成份及高解析度超音波影像觀察血管狹窄程度及斑塊結構來診斷出心血管疾病。在此論文研究中可分為血管內超音波/光聲影像系統開發及整合型探頭開發兩部份。在系統開發上,為提升影像成像速度,藉由整合商用血管內超音波影像系統及高速雷射發展出即時血管內超音波/光聲影像系統,再加上錐狀末端光纖的使用來達到環型照光的效果,使得光聲影像擷取上不需轉動雷射激發方向以成像,以上技術之整合使得此系統幀率可達19fps,其超音波影像之橫向及軸向解析度分別為2.56°及62.4μm,而光聲影像之解析度分別為3.76°及 91.5μm。除了系統開發之外,在此研究中亦開發兩種以符合臨床血管內影像及高速成像為目的之新式微小型超音波/光聲整合探頭,來達到即時三維影像及降低雷射脈衝重覆率之需求。第一種探頭由環形超音波發射換能器、環形光源激發元件以及聚合物微環超音波接收共振器所組成,其中環形超音波發射換能器用於側向超音波的發射,並且使用光纖配合微錐狀鏡造成光轉折以做為光聲訊號的激發源,而在超音波/光聲訊號接收上利用一個光學式聚合物微環超音波接收共振器做訊號的接收以成像,以仿體影像驗證此探頭之可行性。另外,亦發展一新式全光學式超音波/光聲探頭,此探頭特性為無任何電子元件及傳統探頭之壓電材料,可降低拋棄式探頭成本,適用於血管內影像探頭,並具有發展成陣列探頭之優勢,在本研究中分別以兩種不同之光學設計來達到此一目的,首先,結合錐狀末端光纖及聚合物微環超音波接收共振器發展一全光學式超音波/光聲探頭,透過此設計在影像擷取上可利用單一發的雷射激發產生超音波及光聲訊號,並透過分頻影像處理的方法將超音波及光聲訊號分離,以增加此二訊號之對比度;另一項設計為解決訊號分離之問題,採用一雙色系統之設計,利用光學濾波器之分光特性,可藉由雷射波長之切換來達到超音波/光聲影像模式之切換,其影像可利用合成孔徑聚焦演算法以進一步提升解析度和對比度,橫向及軸向解析度可達2.52°和125μm,在本實驗中使用仿體影像驗證探頭之可行性。總體而言,本研究之重要貢獻為開發高幀率血管內超音波/光聲影像系統及探頭。此系統可有效擷取被影像物體及動物血管之超音波結構及光學吸收對比之影像資訊,以資為組織鑑別之依據;而新式全光學超音波/光聲影像探頭可提高血管內陣列超音波/光聲探頭之可行性。在未來工作中,可藉由結合環型激發及微型陣列探頭技術達到即時三維血管內超音波/光聲之成像,以期能達到心血管疾病診斷之目的。 | zh_TW |
dc.description.abstract | Photoacoustic (PA) imaging combines good ultrasonic resolution with high optical contrast. In this thesis, integration of intravascular ultrasound (IVUS) and photoacoustic (IVPA) imaging was proposed for diagnosis of cardiovascular diseases. The hypothesis is that ultrasound (US) provide anatomical details of vessels, while the atherosclerotic and normal vessels can be differentiated by the photoacoustic (PA) techniques. In the first part of the thesis, we constructed a dual-modality imaging system for IVUS/IVPA imaging. A high-speed pulsed laser was used to increase the imaging frame rate for real-time IVUS/IVPA imaging. An optical fiber with an axicon-like distal tip was designed for omni-directional excitation, eliminating the need of fiber rotation. The imaging frame rate can reach 19 frames per second. Phantom and ex vivo experiments show that the lateral and axial resolution of US is 2.56° and 62.4μm at -6 dB, respectively. The PA resolution is 3.76° laterally and 91.5μm axially. In the second part, we developed two types of integrated imaging probes. One is an imaging scanhead with piezoelectric ring-shaped transmitter and the other is an all-optical IVUS/IVPA transducer. Both can be made sufficiently small for intravascular applications and a polymer microring was used for acoustic detection. Note that the all-optical design is suitable for one-time, disposable use. In the first all-optical design, the US signal is induced by impinging the laser energy on the substrate of the microring. A subband imaging method is subsequently applied to separate the PA signals from the US signals. In the second all-optical design, a dichroic filter is located at the outlet of the optical fiber to switch between US and PA imaging modes. The green laser pulse was absorbed by the red dichroic filter to induce an acoustic signal for US transmission, while the red laser light penetrated through the dichroic filter and illuminated the sample directly for PA imaging. The image resolution and the contrast can be further improved by applying the SAFT. The axial and lateral resolutions of this imaging system are 125μm and 2.52°, respectively. In summary, the thesis has realized effective IVUS/IVPA imaging methods for cardiovascular diseases diagnosis. The contributions include development of a dual-modality imaging system and various kinds of integrated imaging probes. Future works include high-frame-rate imaging techniques to achieve real-time 2D and 3D IVUS/IVPA imaging by integration of omni-directional excitation with a ring array transducer. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:18:29Z (GMT). No. of bitstreams: 1 ntu-101-D96945010-1.pdf: 4839975 bytes, checksum: 6767e68ea855cc7f57eacb22d26dc1f7 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 致謝 I
ABSTRACT II 中文摘要 IV CONTENT VI LIST OF FIGURES X LIST OF TABLES XIV GLOSSARY OF SYMBOLS AND ABBREVIATION XV CHAPTER 1. INTRODUCTION 1 1.1 CARDIOVASCULAR DISEASES 1 1.2 ATHEROSCLERTIC PLAQUES 1 1.3 CURRENT IMAGING STRATEGIES 2 1.4 INTRAVASCULAR ULTRASOUND 4 1.5 PHOTOACOUSTIC IMAGING 5 1.5.1 Theory 5 1.5.2 Image contrast 6 1.5.3 Penetration depth 6 1.6 INTRAVASCULAR PHOTOACOUSTIC IMAGING 7 1.7 OBJECTIVES 8 1.8 ORGANIZATION OF THE DISSERTATION 9 CHAPTER 2. INTEGRATED IVUS AND IVPA IMAGING SYSTEM 11 2.1 INTRODUCTION 11 2.2 PROTOTYPE INTEGRATED IVUS/IVPA IMAGING SYSTEM 12 2.2.1 System configuration 12 2.2.2 Image formation 13 2.2.3 Ex-vivo study of the imaging system 14 2.2.4 Imaging results — Tissue characterization 14 2.3 REAL-TIME IVUS/IVPA IMAGING SYSTEM 16 2.3.1 System configuration 16 2.3.2 Integrated IVUS and IVPA imaging probe 17 2.3.3 Post-imaging processing 19 2.3.4 Evaluation of the high-speed imaging system 20 2.3.5 Imaging results 21 2.4 DISCUSSION 25 2.5 SUMMARY 26 CHAPTER 3. INTEGRATED IVUS AND IVPA IMAGING SCANHEAD 27 3.1 INTRODUCTION 27 3.2 DESIGN AND FABRICATION OF INTEGRATED SCANHEAD 28 3.2.1 Fabrication of ultrasonic ring transducer 29 3.2.2 Polymer microring resonator 30 3.2.3 Optical illumination 31 3.2.4 Configuration of the integrated IVUS/IVPA scanhead 32 3.2.5 Evaluation of the integrated IVUS/IVPA scanhead 33 3.3 RESULTS 34 3.3.1 Testing of the ring transducer 34 3.3.2 Testing of the polymer microring resonator 35 3.3.3 Testing of the optical illumination device 37 3.3.4 Performance of the integrated IVUS/IVPA scanhead 38 3.4 DISCUSSION 39 3.5 SUMMARY 40 CHAPTER 4. ALL-OPTICAL SCANHEAD FOR US AND PA DUAL-MODALITY IMAGING 41 4.1 INTRODUCTION 41 4.1.1 Optical generation of US 42 4.1.2 Optical detection of US 43 4.1.3 Polyvinylidene fluoride (PVDF) transducer 43 4.1.4 Subband photoacoustic imaging technique 44 4.2 INTEGRATED INTRAVASCULAR PA-BASED US AND PA IMAGING PROBE BY USING PVDF TRANSDUCER 44 4.2.1 Configuration of integrated imaging probe 44 4.2.2 Fabrication ultrasonic PVDF transducer 45 4.2.3 PA-based ultrasound imaging 46 4.2.4 Photoacoustic imaging 46 4.2.5 Testing of the integrated imaging probe 47 4.2.6 Separation US and PA signals with the subband imaging 47 4.2.7 Results 48 4.3 ALL-OPTICAL IVUS/IVPA SCANHEAD 52 4.3.1 Experimental setup 53 4.3.2 Imaging-resolution measurement 54 4.3.3 Grid-phantom study 54 4.3.4 Subband imaging for further separation of US/PA signals 55 4.3.5 Imaging results 56 4.4 DISCUSSION 59 4.5 SUMMARY 61 CHAPTER 5. ALL-OPTICAL TRANSDUCER FOR US AND PA IMAGING — IMAGING MODE SWITCHING BY DICHROIC FILTERING 62 5.1 INTRODUCTION 62 5.2 PRELIMINARY TEST WITH PIEZOELECTRIC TRANSDUCER 62 5.2.1 Methodology 62 5.2.2 Imaging results — Grid phantom 65 5.3 METHODS AND EXPERIMENTAL SETUP 66 5.3.1 Designs of all-optical US/PA transducer 66 5.3.2 Experimental setup 67 5.3.3 Post-signal processing 69 5.3.4 Imaging resolution measurement 70 5.3.5 Grid-phantom study 71 5.3.6 Cyst-like phantom study 71 5.3.7 Rabbit's aorta ex-vivo study 72 5.4 RESULTS 72 5.4.1 Imaging performance measurement 72 5.4.2 Grid-phantom study 74 5.4.3 Cyst-like phantom study 75 5.4.4 Rabbit's aorta ex-vivo study 76 5.5 DISCUSSION 77 5.6 SUMMARY 78 CHAPTER 6. CONCLUSIONS AND FUTURE WORKS 79 6.1 CONCLUSIONS 79 6.2 FUTURE WORKS 81 6.2.1 Limitations and Methodology for improvement 81 6.2.2 Optimization of all-optical IVUS/IVPA transducer 82 6.2.3 Development of all-optical array transducer 84 REFERENCES 87 PUBLICATION LIST 97 | |
dc.language.iso | en | |
dc.title | 血管內超音波/光聲影像系統及探頭之開發 | zh_TW |
dc.title | Development of Intravascular Ultrasound/Photoacoustic Imaging System and Probe | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 江惠華(Hui-Hau Chiang),王水深(Shoei-Shen Wang),王倫(Lon Wang),宋孔彬(Kung-Bin Sung) | |
dc.subject.keyword | 動脈粥狀硬化斑塊,血管內超音波影像,血管內光聲影像,全光學式超音波/光聲影像探頭, | zh_TW |
dc.subject.keyword | atherosclerotic plaque,intravascular ultrasound (IVUS),intravascular photoacoustic (IVPA) imaging,all-optical US/PA imaging scanhead, | en |
dc.relation.page | 98 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-17 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 4.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。