Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63761
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor董成淵(Chen-Yuan Dong),陳俊維(Chun-Wei Chen)
dc.contributor.authorTzu-Pei Chenen
dc.contributor.author陳姿蓓zh_TW
dc.date.accessioned2021-06-16T17:18:28Z-
dc.date.available2023-04-15
dc.date.copyright2020-04-15
dc.date.issued2020
dc.date.submitted2020-03-30
dc.identifier.citation1. M. I. H. Ansari, A. Qurashi and M. K. Nazeeruddin, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 1-24.
2. in Progress in Inorganic Chemistry, DOI: 10.1002/9780470166499.ch1.
3. Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou and Y. Yang, Nano Today, 2015, 10, 355-396.
4. P. Gao, M. Grätzel and M. K. Nazeeruddin, Energy & Environmental Science, 2014, 7, 2448-2463.
5. E. Shi, Y. Gao, B. P. Finkenauer, Akriti, A. H. Coffey and L. Dou, Chemical Society Reviews, 2018, 47, 6046-6072.
6. T. C. Sum and N. Mathews, Energy & Environmental Science, 2014, 7, 2518-2534.
7. P. Tonui, S. O. Oseni, G. Sharma, Q. Yan and G. Tessema Mola, Renewable and Sustainable Energy Reviews, 2018, 91, 1025-1044.
8. D. Zhao, C. Wang, Z. Song, Y. Yu, C. Chen, X. Zhao, K. Zhu and Y. Yan, ACS Energy Letters, 2018, 3, 305-306.
9. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Journal of the American Chemical Society, 2009, 131, 6050-6051.
10. S. I. Seok, M. Grätzel and N.-G. Park, Small, 2018, 14, 1704177.
11. Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman and J. Huang, Nature Materials, 2014, 14, 193.
12. K. Liang, D. B. Mitzi and M. T. Prikas, Chemistry of Materials, 1998, 10, 403-411.
13. Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Scholes and B. P. Rand, Nature Photonics, 2017, 11, 108.
14. Z. Yang, Y. Deng, X. Zhang, S. Wang, H. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang and R. Ma, Advanced Materials, 2018, 30, 1704333.
15. J. Chen, S. Zhou, S. Jin, H. Li and T. Zhai, Journal of Materials Chemistry C, 2016, 4, 11-27.
16. C. R. Kagan, D. B. Mitzi and C. D. Dimitrakopoulos, Science, 1999, 286, 945-947.
17. X. Y. Chin, D. Cortecchia, J. Yin, A. Bruno and C. Soci, Nature Communications, 2015, 6, 7383.
18. S. P. Senanayak, B. Yang, T. H. Thomas, N. Giesbrecht, W. Huang, E. Gann, B. Nair, K. Goedel, S. Guha, X. Moya, C. R. McNeill, P. Docampo, A. Sadhanala, R. H. Friend and H. Sirringhaus, Science Advances, 2017, 3, e1601935.
19. S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss and M. V. Kovalenko, Nature Communications, 2015, 6, 8056.
20. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar and T. C. Sum, Nature Materials, 2014, 13, 476.
21. H.-A. Chen, M.-H. Lee and C.-W. Chen, Journal of Materials Chemistry C, 2016, 4, 5248-5254.
22. M. A. Green, A. Ho-Baillie and H. J. Snaith, Nature Photonics, 2014, 8, 506.
23. M. Bokdam, T. Sander, A. Stroppa, S. Picozzi, D. D. Sarma, C. Franchini and G. Kresse, Scientific Reports, 2016, 6, 28618.
24. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar and T. C. Sum, Science, 2013, 342, 344-347.
25. NREL, https://www.nrel.gov/pv/cell-efficiency.html.
26. C. Li, X. Lu, W. Ding, L. Feng, Y. Gao and Z. Guo, Acta Crystallographica Section B, 2008, 64, 702-707.
27. W.-J. Yin, T. Shi and Y. Yan, Advanced Materials, 2014, 26, 4653-4658.
28. G. Giorgi, J.-I. Fujisawa, H. Segawa and K. Yamashita, The Journal of Physical Chemistry Letters, 2013, 4, 4213-4216.
29. D. B. Mitzi, Journal of the Chemical Society, Dalton Transactions, 2001, DOI: 10.1039/B007070J, 1-12.
30. C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, Inorganic Chemistry, 2013, 52, 9019-9038.
31. L. M. Herz, ACS Energy Letters, 2017, 2, 1539-1548.
32. K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida and N. Miura, Solid State Communications, 2003, 127, 619-623.
33. Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya and Y. Kanemitsu, Photoelectronic Responses in Solution-Processed Perovskite CH NH PbI Solar Cells Studied by Photoluminescence and Photoabsorption Spectroscopy, 2015.
34. J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even and A. D. Mohite, Nature Communications, 2018, 9, 2254.
35. F. Brivio, A. B. Walker and A. Walsh, APL Materials, 2013, 1, 042111.
36. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde and A. Walsh, Nano Letters, 2014, 14, 2584-2590.
37. R. Gottesman, E. Haltzi, L. Gouda, S. Tirosh, Y. Bouhadana, A. Zaban, E. Mosconi and F. De Angelis, The Journal of Physical Chemistry Letters, 2014, 5, 2662-2669.
38. N. Onoda-Yamamuro, T. Matsuo and H. Suga, Journal of Physics and Chemistry of Solids, 1992, 53, 935-939.
39. A. Poglitsch and D. Weber, The Journal of Chemical Physics, 1987, 87, 6373-6378.
40. M. Hirasawa, T. Ishihara, T. Goto, K. Uchida and N. Miura, Physica B: Condensed Matter, 1994, 201, 427-430.
41. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science, 2012, 338, 643-647.
42. G. Niu, X. Guo and L. Wang, Journal of Materials Chemistry A, 2015, 3, 8970-8980.
43. T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee and H. J. Snaith, Nature Communications, 2013, 4, 2885.
44. D. Wang, M. Wright, N. K. Elumalai and A. Uddin, Solar Energy Materials and Solar Cells, 2016, 147, 255-275.
45. T. A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-M. Chen, M.-C. Tsai, L.-Y. Chen, A. A. Dubale and B.-J. Hwang, Energy & Environmental Science, 2016, 9, 323-356.
46. T.-P. Chen, C.-W. Lin, S.-S. Li, Y.-H. Tsai, C.-Y. Wen, W. J. Lin, F.-M. Hsiao, Y.-P. Chiu, K. Tsukagoshi, M. Osada, T. Sasaki and C.-W. Chen, Advanced Energy Materials, 2018, 8, 1701722.
47. M. Osada and T. Sasaki, Advanced Materials, 2012, 24, 210-228.
48. M. Osada, Y. Ebina, H. Funakubo, S. Yokoyama, T. Kiguchi, K. Takada and T. Sasaki, Advanced Materials, 2006, 18, 1023-1027.
49. K. Akatsuka, M.-a. Haga, Y. Ebina, M. Osada, K. Fukuda and T. Sasaki, ACS Nano, 2009, 3, 1097-1106.
50. M. Ohwada, K. Kimoto, T. Mizoguchi, Y. Ebina and T. Sasaki, Scientific Reports, 2013, 3, 2801.
51. Y. Liu, J. Wang, P. Yang and K. Matras-Postolek, RSC Advances, 2015, 5, 61657-61663.
52. P. P. Boix, S. Agarwala, T. M. Koh, N. Mathews and S. G. Mhaisalkar, The Journal of Physical Chemistry Letters, 2015, 6, 898-907.
53. H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, S. Tretiak, L. Pedesseau, J. Even, M. A. Alam, G. Gupta, J. Lou, P. M. Ajayan, M. J. Bedzyk, M. G. Kanatzidis and A. D. Mohite, Nature, 2016, 536, 312.
54. K. Hong, Q. V. Le, S. Y. Kim and H. W. Jang, Journal of Materials Chemistry C, 2018, 6, 2189-2209.
55. B. Saparov and D. B. Mitzi, Chemical Reviews, 2016, 116, 4558-4596.
56. R. K. Misra, B.-E. Cohen, L. Iagher and L. Etgar, ChemSusChem, 2017, 10, 3712-3721.
57. Z. Cheng and J. Lin, CrystEngComm, 2010, 12, 2646-2662.
58. C. Huo, B. Cai, Z. Yuan, B. Ma and H. Zeng, Small Methods, 2017, 1, 1600018.
59. C. Katan, N. Mercier and J. Even, Chemical Reviews, 2019, 119, 3140-3192.
60. D. Montasserasadi, M. W. Granier, L. Spinu, S. C. Rai, W. Zhou and J. B. Wiley, Dalton Transactions, 2015, 44, 10654-10660.
61. K.-z. Du, Q. Tu, X. Zhang, Q. Han, J. Liu, S. Zauscher and D. B. Mitzi, Inorganic Chemistry, 2017, 56, 9291-9302.
62. Q. Shan, J. Song, Y. Zou, J. Li, L. Xu, J. Xue, Y. Dong, B. Han, J. Chen and H. Zeng, Small, 2017, 13, 1701770.
63. M. E. Kamminga, H.-H. Fang, M. R. Filip, F. Giustino, J. Baas, G. R. Blake, M. A. Loi and T. T. M. Palstra, Chemistry of Materials, 2016, 28, 4554-4562.
64. L. Lanzetta, J. M. Marin-Beloqui, I. Sanchez-Molina, D. Ding and S. A. Haque, ACS Energy Letters, 2017, 2, 1662-1668.
65. D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp and M. G. Kanatzidis, Journal of the American Chemical Society, 2015, 137, 7843-7850.
66. D. B. Straus and C. R. Kagan, The Journal of Physical Chemistry Letters, 2018, 9, 1434-1447.
67. G. Grancini and M. K. Nazeeruddin, Nature Reviews Materials, 2019, 4, 4-22.
68. C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp and M. G. Kanatzidis, Chemistry of Materials, 2016, 28, 2852-2867.
69. L. Etgar, Energy & Environmental Science, 2018, 11, 234-242.
70. J.-C. Blancon, H. Tsai, W. Nie, C. C. Stoumpos, L. Pedesseau, C. Katan, M. Kepenekian, C. M. M. Soe, K. Appavoo, M. Y. Sfeir, S. Tretiak, P. M. Ajayan, M. G. Kanatzidis, J. Even, J. J. Crochet and A. D. Mohite, Science, 2017, 355, 1288-1292.
71. X. Hong, T. Ishihara and A. V. Nurmikko, Physical Review B, 1992, 45, 6961-6964.
72. S. Zhang, P. Audebert, Y. Wei, A. Al Choueiry, G. Lanty, A. Bréhier, L. Galmiche, G. Clavier, C. Boissière, J.-S. Lauret and E. Deleporte, Materials (Basel), 2010, 3, 3385-3406.
73. Y. Chen, Y. Sun, J. Peng, J. Tang, K. Zheng and Z. Liang, Advanced Materials, 2018, 30, 1703487.
74. S. González-Carrero, R. E. Galian and J. Pérez-Prieto, Particle & Particle Systems Characterization, 2015, 32, 709-720.
75. K. Greger, M. J. Neetz, E. G. Reynaud and E. H. K. Stelzer, Opt. Express, 2011, 19, 20743-20750.
76. R. Regmi, 2017.
77. J. W. Borst and A. J. W. G. Visser, Measurement Science and Technology, 2010, 21, 102002.
78. H. Cao, Waves in Random Media, 2003, 13, R1-R39.
79. D. Wiersma, Nature, 2000, 406, 133-135.
80. Y. Mi, Z. Liu, Q. Shang, X. Niu, J. Shi, S. Zhang, J. Chen, W. Du, Z. Wu, R. Wang, X. Qiu, X. Hu, Q. Zhang, T. Wu and X. Liu, Small, 2018, 14, 1703136.
81. D. S. Wiersma, Nature Physics, 2008, 4, 359.
82. F. Luan, B. Gu, A. S. L. Gomes, K.-T. Yong, S. Wen and P. N. Prasad, Nano Today, 2015, 10, 168-192.
83. M. W. Evans, Journal of Molecular Liquids, 1993, 55, 127-136.
84. N. Kobayashi, K. Ikeda, B. Gu, S. Takahashi, H. Masumoto and S. Maekawa, Scientific Reports, 2018, 8, 4978.
85. G. Dionne, A. Taussig, M. Bolduc, L. Bi and C. A Ross, Mixed-cation designs of magnetic perovskites for Faraday rotation at IR wavelengths, 2007.
86. V. Gruson, S. J. Weber, L. Barreau, J. F. Hergott, F. Lepetit, T. Auguste, B. Carré, P. Salières and T. Ruchon, J. Opt. Soc. Am. B, 2018, 35, A15-A21.
87. in Circular Dichroism and Magnetic Circular Dichroism Spectroscopy for Organic Chemists, The Royal Society of Chemistry, 2012, DOI: 10.1039/9781849732932-00001, pp. 1-41.
88. B. Han, X. Gao, J. Lv and Z. Tang, Advanced Materials, 0, 1801491.
89. C. J. Barrows, R. Fainblat and D. R. Gamelin, Journal of Materials Chemistry C, 2017, 5, 5232-5238.
90. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Nano Letters, 2013, 13, 1764-1769.
91. W. Nie, J.-C. Blancon, A. J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, M. A. Alam, M. Y. Sfeir, C. Katan, J. Even, S. Tretiak, J. J. Crochet, G. Gupta and A. D. Mohite, Nature Communications, 2016, 7, 11574.
92. W. Huang, J. S. Manser, P. V. Kamat and S. Ptasinska, Chemistry of Materials, 2016, 28, 303-311.
93. Y. Lekina and Z. X. Shen, Journal of Science: Advanced Materials and Devices, 2019, DOI: https://doi.org/10.1016/j.jsamd.2019.03.005.
94. I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee and H. I. Karunadasa, Angewandte Chemie, 2014, 126, 11414-11417.
95. H. Hu, T. Salim, B. Chen and Y. M. Lam, Scientific Reports, 2016, 6, 33546.
96. M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim and E. H. Sargent, Nature Nanotechnology, 2016, 11, 872.
97. D. B. Mitzi, K. Chondroudis and C. R. Kagan, IBM Journal of Research and Development, 2001, 45, 29-45.
98. L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos and P. Yang, Science, 2015, 349, 1518-1521.
99. J. Calabrese, N. L. Jones, R. L. Harlow, N. Herron, D. L. Thorn and Y. Wang, Journal of the American Chemical Society, 1991, 113, 2328-2330.
100. W. Peng, J. Yin, K.-T. Ho, O. Ouellette, M. De Bastiani, B. Murali, O. El Tall, C. Shen, X. Miao, J. Pan, E. Alarousu, J.-H. He, B. S. Ooi, O. F. Mohammed, E. Sargent and O. M. Bakr, Nano Letters, 2017, 17, 4759-4767.
101. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent and O. M. Bakr, Science, 2015, 347, 519-522.
102. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao and J. Huang, Science, 2015, 347, 967-970.
103. M. I. Saidaminov, A. L. Abdelhady, B. Murali, E. Alarousu, V. M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. Maculan, A. Goriely, T. Wu, O. F. Mohammed and O. M. Bakr, Nature Communications, 2015, 6, 7586.
104. C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos and M. G. Kanatzidis, Proceedings of the National Academy of Sciences, 2019, 116, 58-66.
105. X. Wu, M. T. Trinh and X. Y. Zhu, The Journal of Physical Chemistry C, 2015, 119, 14714-14721.
106. Q. Shang, Y. Wang, Y. Zhong, Y. Mi, L. Qin, Y. Zhao, X. Qiu, X. Liu and Q. Zhang, The Journal of Physical Chemistry Letters, 2017, 8, 4431-4438.
107. H.-H. Fang, J. Yang, S. Tao, S. Adjokatse, M. E. Kamminga, J. Ye, G. R. Blake, J. Even and M. A. Loi, Advanced Functional Materials, 2018, 28, 1800305.
108. F. Yuan, Z. Wu, H. Dong, J. Xi, K. Xi, G. Divitini, B. Jiao, X. Hou, S. Wang and Q. Gong, The Journal of Physical Chemistry C, 2017, 121, 15318-15325.
109. Y.-Q. Zhao, Q.-R. Ma, B. Liu, Z.-L. Yu, J. Yang and M.-Q. Cai, Nanoscale, 2018, 10, 8677-8688.
110. L. Gan, J. Li, Z. Fang, H. He and Z. Ye, The Journal of Physical Chemistry Letters, 2017, 8, 5177-5183.
111. D. Ma, Y. Fu, L. Dang, J. Zhai, I. A. Guzei and S. Jin, Nano Research, 2017, 10, 2117-2129.
112. B. Cheng, T.-Y. Li, P. Maity, P.-C. Wei, D. Nordlund, K.-T. Ho, D.-H. Lien, C.-H. Lin, R.-Z. Liang, X. Miao, I. A. Ajia, J. Yin, D. Sokaras, A. Javey, I. S. Roqan, O. F. Mohammed and J.-H. He, Communications Physics, 2018, 1, 80.
113. B.-E. Cohen, M. Wierzbowska and L. Etgar, Sustainable Energy & Fuels, 2017, 1, 1935-1943.
114. C. Ma, M.-F. Lo and C.-S. Lee, Journal of Materials Chemistry A, 2018, 6, 18871-18876.
115. A. H. Proppe, R. Quintero-Bermudez, H. Tan, O. Voznyy, S. O. Kelley and E. H. Sargent, Journal of the American Chemical Society, 2018, 140, 2890-2896.
116. S. Silver, J. Yin, H. Li, J.-L. Brédas and A. Kahn, Advanced Energy Materials, 2018, 8, 1703468.
117. H. Telfah, A. Jamhawi, M. B. Teunis, R. Sardar and J. Liu, The Journal of Physical Chemistry C, 2017, 121, 28556-28565.
118. K. Nagao, N. Kawano, M. Koshimizu and K. Asai, Japanese Journal of Applied Physics, 2014, 53, 02BC21.
119. S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews and S. G. Mhaisalkar, Advanced Materials, 2016, 28, 6804-6834.
120. Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X. Y. Zhu and S. Jin, Nano Letters, 2016, 16, 1000-1008.
121. S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone and P. Yang, Proceedings of the National Academy of Sciences, 2016, 113, 1993-1998.
122. H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin and X. Y. Zhu, Nature Materials, 2015, 14, 636.
123. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang and R. P. H. Chang, Physical Review Letters, 1999, 82, 2278-2281.
124. Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao and H. Fu, Advanced Materials, 2015, 27, 3405-3410.
125. M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith and M. K. Riede, Advanced Materials, 2016, 28, 923-929.
126. Q. Zhang, S. T. Ha, X. Liu, T. C. Sum and Q. Xiong, Nano Letters, 2014, 14, 5995-6001.
127. R. Dhanker, A. N. Brigeman, A. V. Larsen, R. J. Stewart, J. B. Asbury and N. C. Giebink, Applied Physics Letters, 2014, 105, 151112.
128. Y. Mi, Z. Liu, Q. Shang, X. Niu, J. Shi, S. Zhang, J. Chen, W. Du, Z. Wu, R. Wang, X. Qiu, X. Hu, Q. Zhang, T. Wu and X. Liu, Fabry-Pérot Oscillation and Room Temperature Lasing in Perovskite Cube-Corner Pyramid Cavities, 2018.
129. M. Leonetti, C. Conti and C. Lopez, Nature Photonics, 2011, 5, 615.
130. C.-W. Chen, S.-Y. Hsiao, C.-Y. Chen, H.-W. Kang, Z.-Y. Huang and H.-W. Lin, Journal of Materials Chemistry A, 2015, 3, 9152-9159.
131. B. R. Sutherland and E. H. Sargent, Nature Photonics, 2016, 10, 295.
132. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, Applied Physics Letters, 2004, 84, 855-857.
133. S. H. Kim, H. H. Park, Y. H. Song, H. J. Park, J. B. Kim, S. R. Jeon, H. Jeong, M. S. Jeong and G. M. Yang, Opt. Express, 2013, 21, 7125-7130.
134. B. Liu, C. M. M. Soe, C. C. Stoumpos, W. Nie, H. Tsai, K. Lim, A. D. Mohite, M. G. Kanatzidis, T. J. Marks and K. D. Singer, Solar RRL, 2017, 1, 1700062.
135. P. Gao, A. R. Bin Mohd Yusoff and M. K. Nazeeruddin, Nature Communications, 2018, 9, 5028.
136. M. I. Dar, G. Jacopin, S. Meloni, A. Mattoni, N. Arora, A. Boziki, S. M. Zakeeruddin, U. Rothlisberger and M. Grätzel, Science Advances, 2016, 2, e1601156.
137. T. Chen, W.-L. Chen, B. J. Foley, J. Lee, J. P. C. Ruff, J. Y. P. Ko, C. M. Brown, L. W. Harriger, D. Zhang, C. Park, M. Yoon, Y.-M. Chang, J. J. Choi and S.-H. Lee, Proceedings of the National Academy of Sciences, 2017, 114, 7519-7524.
138. T. Ishihara, J. Takahashi and T. Goto, Physical Review B, 1990, 42, 11099-11107.
139. D. G. Billing and A. Lemmerer, New Journal of Chemistry, 2008, 32, 1736-1746.
140. A. Lemmerer and D. G. Billing, Dalton Transactions, 2012, 41, 1146-1157.
141. D. Billing and A. Lemmerer, Synthesis, characterization and phase transitions in the inorganic-organic layered perovskite-type hybrids [(CnH2n+1NH3)(2)PbI4], n=4, 5 and 6, 2007.
142. C. L. Davies, J. Borchert, C. Q. Xia, R. L. Milot, H. Kraus, M. B. Johnston and L. M. Herz, The Journal of Physical Chemistry Letters, 2018, 9, 4502-4511.
143. X. Wu, M. T. Trinh, D. Niesner, H. Zhu, Z. Norman, J. S. Owen, O. Yaffe, B. J. Kudisch and X. Y. Zhu, Journal of the American Chemical Society, 2015, 137, 2089-2096.
144. B. Peng, J. Li, Q. Li, Y. Li, H. Zhu, L. Zhang, X. Wang, L. Bi, H. Lu, J. Xie, L. Deng, Q. Xu and K. Loh, RSC Advances, 2017, 7, 18366-18373.
145. K. Gauthron, J. S. Lauret, L. Doyennette, G. Lanty, A. Al Choueiry, S. J. Zhang, A. Brehier, L. Largeau, O. Mauguin, J. Bloch and E. Deleporte, Opt. Express, 2010, 18, 5912-5919.
146. J. Yin, H. Li, D. Cortecchia, C. Soci and J.-L. Brédas, ACS Energy Letters, 2017, 2, 417-423.
147. A. Yangui, S. Pillet, A. Mlayah, A. Lusson, G. Bouchez, S. Triki, Y. Abid and K. Boukheddaden, The Journal of Chemical Physics, 2015, 143, 224201.
148. L. Kong, G. Liu, J. Gong, Q. Hu, R. D. Schaller, P. Dera, D. Zhang, Z. Liu, W. Yang, K. Zhu, Y. Tang, C. Wang, S.-H. Wei, T. Xu and H.-k. Mao, Proceedings of the National Academy of Sciences, 2016, 113, 8910-8915.
149. A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Pérez-Osorio, H. J. Snaith, F. Giustino, M. B. Johnston and L. M. Herz, Nature Communications, 2016, 7, 11755.
150. Z. Guo, X. Wu, T. Zhu, X. Zhu and L. Huang, ACS Nano, 2016, 10, 9992-9998.
151. G. Kieslich, S. Sun and A. K. Cheetham, Chemical Science, 2014, 5, 4712-4715.
152. G. Kieslich, S. Sun and A. K. Cheetham, Chemical Science, 2015, 6, 3430-3433.
153. Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry and K. Zhu, Chemistry of Materials, 2016, 28, 284-292.
154. M. C. Gélvez-Rueda, N. Renaud and F. C. Grozema, The Journal of Physical Chemistry C, 2017, 121, 23392-23397.
155. S. Govinda, B. P. Kore, D. Swain, A. Hossain, C. De, T. N. Guru Row and D. D. Sarma, The Journal of Physical Chemistry C, 2018, 122, 13758-13766.
156. D. G. Billing and A. Lemmerer, CrystEngComm, 2007, 9, 236-244.
157. X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, O. Bushuyev, M. Yuan, R. Comin, D. McCamant, S. O. Kelley and E. H. Sargent, Nature Materials, 2018, 17, 550-556.
158. T. Li, W. A. Dunlap-Shohl, E. W. Reinheimer, P. Le Magueres and D. B. Mitzi, Chemical Science, 2019, 10, 1168-1175.
159. K. Tanaka, T. Takahashi, T. Kondo, K. Umeda, K. Ema, T. Umebayashi, K. Asai, K. Uchida and N. Miura, Japanese Journal of Applied Physics, 2005, 44, 5923-5932.
160. N. Kitazawa and Y. Watanabe, Journal of Physics and Chemistry of Solids, 2010, 71, 797-802.
161. N. Kitazawa, M. Aono and Y. Watanabe, Materials Chemistry and Physics, 2012, 134, 875-880.
162. F. Zheng, L. Z. Tan, S. Liu and A. M. Rappe, Nano Letters, 2015, 15, 7794-7800.
163. M. Kepenekian and J. Even, The Journal of Physical Chemistry Letters, 2017, 8, 3362-3370.
164. S. Hu, H. Gao, Y. Qi, Y. Tao, Y. Li, J. R. Reimers, M. Bokdam, C. Franchini, D. Di Sante, A. Stroppa and W. Ren, The Journal of Physical Chemistry C, 2017, 121, 23045-23054.
165. J. Even, L. Pedesseau, J.-M. Jancu and C. Katan, The Journal of Physical Chemistry Letters, 2013, 4, 2999-3005.
166. L. Pedesseau, M. Kepenekian, R. Robles, D. Sapori, C. Katan and J. Even, Theoretical studies of Rashba and Dresselhaus effects in hybrid organic-inorganic perovskites for optoelectronic applications, SPIE, 2016.
167. D. Niesner, M. Wilhelm, I. Levchuk, A. Osvet, S. Shrestha, M. Batentschuk, C. Brabec and T. Fauster, Physical Review Letters, 2016, 117, 126401.
168. M. Kepenekian, R. Robles, C. Katan, D. Sapori, L. Pedesseau and J. Even, ACS Nano, 2015, 9, 11557-11567.
169. C. Zhang, D. Sun, C. X. Sheng, Y. X. Zhai, K. Mielczarek, A. Zakhidov and Z. V. Vardeny, Nature Physics, 2015, 11, 427.
170. Y. J. Wu, C. Shen, Q. H. Tan, J. Shi, X. F. Liu, Z. H. Wu, J. Zhang, P. H. Tan and H. Z. Zheng, Applied Physics Letters, 2018, 112, 153105.
171. C. J. Barrows, V. A. Vlaskin and D. R. Gamelin, The Journal of Physical Chemistry Letters, 2015, 6, 3076-3081.
172. I. A. Akimov, T. Godde, K. V. Kavokin, D. R. Yakovlev, I. I. Reshina, I. V. Sedova, S. V. Sorokin, S. V. Ivanov, Y. G. Kusrayev and M. Bayer, Physical Review B, 2017, 95, 155303.
173. J. G. Rousset, J. Papierska, W. Pacuski, A. Golnik, M. Nawrocki, W. Stefanowicz, S. Stefanowicz, M. Sawicki, R. Jakieła, T. Dietl, A. Navarro-Quezada, B. Faina, T. Li, A. Bonanni and J. Suffczyński, Physical Review B, 2013, 88, 115208.
174. J. H. Harris and A. V. Nurmikko, Physical Review Letters, 1983, 51, 1472-1475.
175. L. Besombes, Y. Léger, L. Maingault, D. Ferrand, H. Mariette and J. Cibert, Physical Review Letters, 2004, 93, 207403.
176. C. Drexler, V. V. Bel’kov, B. Ashkinadze, P. Olbrich, C. Zoth, V. Lechner, Y. V. Terent’ev, D. R. Yakovlev, G. Karczewski, T. Wojtowicz, D. Schuh, W. Wegscheider and S. D. Ganichev, Applied Physics Letters, 2010, 97, 182107.
177. T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science, 2000, 287, 1019-1022.
178. T. Yasuhira, K. Uchida, Y. H. Matsuda, N. Miura and A. Twardowski, Physical Review B, 2000, 61, 4685-4688.
179. P. F. Knowles, Biochemical Education, 1981, 9, 157-157.
180. Q. Fu, X. Tang, B. Huang, T. Hu, L. Tan, L. Chen and Y. Chen, Advanced Science, 2018, 5, 1700387.
181. Y. Zhai, S. Baniya, C. Zhang, J. Li, P. Haney, C.-X. Sheng, E. Ehrenfreund and Z. V. Vardeny, Science Advances, 2017, 3, e1700704.
182. T. Kataoka, T. Kondo, R. Ito, S. Sasaki, K. Uchida and N. Miura, Physical Review B, 1993, 47, 2010-2018.
183. T. Kataoka, T. Kondo, R. Ito, S. Sasaki, K. Uchida and N. Miura, Physica B: Condensed Matter, 1994, 201, 423-426.
184. C.-q. Xu, H. Sakakura, T. Kondo, S. Takeyama, N. Miura, Y. Takahashi, K. Kumata and R. Ito, Solid State Communications, 1991, 79, 249-253.
185. K. S. Cho, T.-Y. Huang, H.-S. Wang, M.-G. Lin, T.-M. Chen, C.-T. Liang, Y. F. Chen and I. Lo, Applied Physics Letters, 2005, 86, 222102.
186. A. V. Stier, K. M. McCreary, B. T. Jonker, J. Kono and S. A. Crooker, Nature Communications, 2016, 7, 10643.
187. Y. Sun, J. Zhang, Z. Ma, C. Chen, J. Han, F. Chen, X. Luo, Y. Sun and Z. Sheng, Applied Physics Letters, 2017, 110, 102102.
188. R. Fainblat, C. J. Barrows, E. Hopmann, S. Siebeneicher, V. A. Vlaskin, D. R. Gamelin and G. Bacher, Nano Letters, 2016, 16, 6371-6377.
189. T. C. Sum and N. Mathews, Halide Perovskites: Photovoltaics, Light Emitting Devices, and Beyond, Wiley, 2018.
190. G. Long, C. Jiang, R. Sabatini, Z. Yang, M. Wei, L. N. Quan, Q. Liang, A. Rasmita, M. Askerka, G. Walters, X. Gong, J. Xing, X. Wen, R. Quintero-Bermudez, H. Yuan, G. Xing, X. R. Wang, D. Song, O. Voznyy, M. Zhang, S. Hoogland, W. Gao, Q. Xiong and E. H. Sargent, Nature Photonics, 2018, 12, 528-533.
191. D. Giovanni, W. K. Chong, H. A. Dewi, K. Thirumal, I. Neogi, R. Ramesh, S. Mhaisalkar, N. Mathews and T. C. Sum, Science Advances, 2016, 2, e1600477.
192. V. Kattoor, K. Awasthi, E. Jokar, E. W.-G. Diau and N. Ohta, The Journal of Physical Chemistry C, 2018, 122, 26623-26634.
193. M. E. Ziffer, J. C. Mohammed and D. S. Ginger, ACS Photonics, 2016, 3, 1060-1068.
194. N. Maccaferri, L. Bergamini, M. Pancaldi, M. K. Schmidt, M. Kataja, S. v. Dijken, N. Zabala, J. Aizpurua and P. Vavassori, Nano Letters, 2016, 16, 2533-2542.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63761-
dc.description.abstract二維Ruddlesden-Popper鈣鈦礦材料(2D RPP,A2A’n-1MnX3n+1),不同於傳統的有機 - 無機混摻的三維(3D)鹵素鈣鈦礦材料,其結構為有機長鏈層和無機鈣鈦礦層交互相疊,而形成類似量子阱的晶體結構。這種獨特的結構使得2D RPP具有比3D鈣鈦礦材料而言更高的水穩定性和更強的激子結合能。此外,2D RPP可以通過改變有機長鏈陽離子,有機陽離子,鹵素陰離子和鹵化金屬八面體的層數來調控螢光波長。由於眾多優越的物理特性,使2D RPP在當前廣泛研究新物理現象以及應用在許多不同光電元件和電子元件中扮演著關鍵的角色。然而由於濕式化學合成過程的複雜性使得合成出高純度同源2D鈣鈦礦仍然是一個巨大的挑戰。其中,有機長鏈陽離子和甲基銨陽離子之間的溶解度差異,導致難以以化學計量法合成出純相同系化合物。除此之外,目前仍然缺乏針對不同元素化合物的2D RPP其結構變化與相變和磁光特性的相關性。因此本論文主要嘗試生長高純度毫米尺寸的單晶2D RPP,以探討2D RPP材料的基礎特性。
在第三章中,我們利用恆溫溶液緩慢蒸發使晶體慢慢析出的方法(SECT)合成了各種不同成分組合且函覆蓋整個可見光範圍帶隙的二維鈣鈦礦材料,如BA2MAn-1PbnI3n+1 (n = 1, 2和3)、BA2MAn-1PbnBr3n+1 (n = 1, 2和3)、BA2FAn-1PbnI3n+1 (n = 2)、PEA2MAn-1PbnI3n+1 (n = 2)、ALA2MAn-1PbnI3n+1 (n = 2)。我們利用X-Ray繞射圖譜和螢光生命週期顯微影像圖譜測量,證實我們合成出的大尺寸2D RPP晶體有良好的結晶度和相純度。我們透過比較含有不同的有機長鏈間隔陽離子,短鍊有機陽離子和鹵素的2D RPP,以討論結構和材料工程以及光學和光物理性質之間的關係。另外,由於2D RPP其具有特殊的金字塔階梯結構和強大的結合能,我們發現這些同源2D大尺寸RPP晶體具有約3.7 uJ / cm2 低閾值無共振腔的雷射行為。
在第四章中,雖然3D鈣鈦礦結構變化所造成的相變已廣被人熟知,然而,2D RPP中不同元素組成與相變的相關性的研究仍然未有一個定論以及系統性的整理。因此透過我們的高純相2D RPP單晶,我們可以降低缺陷態與不純的相所導致的因素,直接探討相變前後的結構變化以及載子動力學。我們比較了不同無機鈣鈦礦層的層數(n值,BA2MAn-1PbnI3n+1 (n = 1, 2和3))、不同的有機間隔陽離子(A,ALA2MAn-1PbnI3n+1,n = 2和PEA2MAn-1PbnI3n+1,n = 2)、不同的有機陽離子分子(A’,BA2MAn-1PbnI3n+1,n = 2)與不同鹵素陰離子(X,BA2MAn-1PbnBr3n+1,n = 2)之2D RPP單晶的的相變所導致的結構和光學性質變化。我們發現,有機長鏈陽離子的排列在相變中扮演著關鍵作用。此外,2D RPP化合物中每個元素部分會影響晶體結構的穩定性並導致相變行為的改變。
在2D RPP材料中,由於特有的有機層-無機層堆疊的異質結構使2D RPP晶體有著結構反稱不對稱性,再加上無機層中含有的重元素,使其存在強自旋軌道耦合並導致電子能帶自旋分裂。然而,針對2D RPP中磁性的相關研究也相當有限。在第五章中,我們透過BA2MAn-1PbnI3n+1 (n = 1, 2和3)和BA2MAn-1PbnI3n+1 (n = 1和2)2D RPP薄膜來探討不同層數的無機鈣鈦礦插層與不同鹵素陰離子的磁光特性。經由不同磁場下的MCD測量,2D RPP晶體顯示出比其3D對應物大得多的有效g因子(-3.34)。此外,量子侷限效應在測量其磁光效應中為重要的變因,2D RPP量子阱的組成會影響較強或較微弱的自旋-軌道耦合。我們同時成功地透過在小磁場下的MCD光譜觀察到由溫度變化引起的自旋-軌道耦合的擾動,其變化趨勢與前一章透過結構和光學測量的結果一致,表明晶體不對稱對於自旋軌道耦合的重要性。我們也發現2D RPP在室溫下也存在著零磁場分裂,這表明2D RPP具有作為自旋極化電子源的巨大潛力。
我們的研究結果表明,由於溶液生長同源有機-無機摻雜二維鈣鈦礦單晶具有可以做為整個可見光範圍的光學增益介質材料的潛力,也因其晶體結構不對稱性而有著強磁光特性,因此二維鈣鈦礦材料可作為尋找新物理性質的材料和有著極具廣闊的應用前景如製作高效能的新型光電子元件和自旋電子元件。
zh_TW
dc.description.abstractTwo dimensional Ruddlesden-Popper perovskite (2D RPP) with chemical formula A2A’n-1MnX3n+1, which is different from traditional halide organic-inorganic 3D perovskite, contains organic spacer layer and inorganic layer, acting as quantum well super-lattices like structure. This unique structure makes 2D RPP have a higher moisture stability, and stronger exciton binding energy than its 3D perovskite counterpart. Besides, the band structure of 2D RPP can be tuned by changing the organic spacer, organic cation, halide anion, and layered perovskite compounds. Because of these superior features, it is expected that 2D RPP plays a key role for the discovery of new physical phenomena and potential novel applications. However, the complexity in the wet-chemical processes make the synthesis of high purity homologous 2D perovskites still a big challenge and the difficulty for the understanding of its fundamental understanding. Among all, the difference in solubility between the organic spacer and methylammonium cation leads to the complication in obtaining pure phase homologous compounds in stoichiometric compositions. In addition, the fundamental mechanisms of the molecular origin for phase transition and magneto-optical properties of the 2D RPP with different element compounds are still lacking. In this regard, this thesis attempts to use high phase purity single crystal 2D RPPs to uncover the intrinsic characteristics of 2D RPP materials, including structure, optical properties, phase transition, and magnetic effects, which can serve as the foundation towards their practical applications.
In Chapter three, we synthesized 2D perovskite materials with various compositions of BA2MAn-1PbnI3n+1 (n = 1, 2 and 3), BA2MAn-1PbnBr3n+1 (n = 1, 2 and 3), PEA2MAn-1PbnI3n+1 (n = 1, 2 and 3), ALA2MAPb2I7 (n = 2), and BA2FAPb2I7 (n = 2), which have band gap covering whole visible light range by using slow evaporation at a constant-temperature (SECT) solution growth. Via the XRD and fluorescence lifetime mapping measurements, the large sized 2D RPP crystals show well crystallinity and highly phase purity. We then provided various 2D RPPs with different organic spacers, short organic cations, and halides to discuss the relationship between the structural and materials engineering and optical and photo-physical properties. Furthermore, due to the special pyramid step-liked structure and strong binding energy, we obtained cavity-free lasing behavior with around 3.7 uJ/cm2 low threshold from these homologous 2D large sized RPP crystals. The result demonstrates that solution-growth homologous organic-inorganic hybrid 2D perovskite single crystals open up a new window as a promising candidate for whole visible range of optical gain media for the development of laser devices.
3D perovskites have been known to possess structure related phase transition, however, the detailed study of phase transition for 2D RPPs is still ambiguous and not well-understood. In Chapter four with high pure phase 2D RPP single crystals, we identified the carrier dynamics before and after phase transition directly without defect state induced effect. Besides. we compared the phase transition induced structural and optical properties changes of different dimensionalities (n-value) with BA2MAn-1PbnI3n+1, n = 1, 2 and 3; different organic spacers (A) with (ALA)2MAn-1PbnI3n+1, n = 2 and (PEA)2MAn-1PbnI3n+1, n = 2; different organic cation molecules (A’) with (BA)2FAn-1PbnI3n+1, n = 2 ; and different halide anions (X) with (BA)2MAn-1PbnBr3n+1, n = 2 2D RPP single crystals. We discovered that the correlation of the rearrangement of organic cations with the electron-phonon interactions plays a key role in the phase transition behavior. Moreover, each part of 2D RPP compositions will affect the crystal structure rigidity and lead to the variation of the phase transition behavior.
Due to the natural multiple quantum wells like hetero-structure of 2D RPPs and heavy elements of inorganic layers, a strong spin-orbit coupling exists in these materials. Together with the structural inversion asymmetry of 2D RPPs crystal, an intriguing electronic band spin splitting is expected. However, the study of magnetic properties in 2D RPPs is rather limited. In Chapter five, we attempt to figure out the detailed magneto-optical characteristics of different dimensionalities of BA2MAn-1PbnI3n+1, n = 1, 2 and 3 and different halide anions for BA2MAn-1PbnI3n+1, n = 1 and 2 2D RPP thin films. Based on the MCD measurements under different magnetic fields, 2D RPPs crystal shows a much larger effective g factor of -3.34 than that of its 3D counterpart. We also discovered that the quantum confinement effect with a thinner inorganic perovskite layer plays a key role in the measured magnetic field effects. The compositions of the quantum well of 2D RPPs lead to the robust and feeble spin-orbit coupling. The perturbation of the spin-orbit coupling induced by temperature change can be successfully observed via MCD spectroscopy under a small magnetic field. The detected trend is consistent with structure and optical measurements, indicating the importance of crystal asymmetry for the occurrence of spin-orbit coupling. Moreover, we found that the zero field splitting in 2D RPPs exists even at room temperature, indicating that 2D RPPs have a great potential to be a spin polarized electron source.
The new physical properties uncovered for organic−inorganic hybrid 2D perovskites in this thesis is very useful for the fundamental understanding of this emerging material system and paving a key step for generating novel optoelectronic and spintronics devices.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:18:28Z (GMT). No. of bitstreams: 1
ntu-109-D04222023-1.pdf: 8024179 bytes, checksum: 1ec9cdcc0aeb9cad3392fd049dd58ac4 (MD5)
Previous issue date: 2020
en
dc.language.isoen
dc.subject二維鈣鈦礦zh_TW
dc.subject低閥值雷射zh_TW
dc.subject相變化zh_TW
dc.subject磁光效應zh_TW
dc.subject自旋軌道耦合zh_TW
dc.subjectmagneto-opticalen
dc.subjectlow threshold laseren
dc.subjectphase transitionen
dc.subjectspin-orbit couplingen
dc.subjectTwo dimensional Ruddlesden-Popper perovskiteen
dc.title二維鈣鈦礦晶體之結構與光電特性變化之探討zh_TW
dc.titleOptical Properties of Two-Dimensional Hybrid Perovskites
Controlled by Structure, Temperature and Magnetic Field
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.oralexamcommittee張玉明(Yu-Ming Chang),何清華(Ching-Hwa Ho),羅志偉(Chih-Wei Luo),許華書(Hua-Shu Hsu)
dc.subject.keyword二維鈣鈦礦,低閥值雷射,相變化,磁光效應,自旋軌道耦合,zh_TW
dc.subject.keywordTwo dimensional Ruddlesden-Popper perovskite,low threshold laser,phase transition,magneto-optical,spin-orbit coupling,en
dc.relation.page200
dc.identifier.doi10.6342/NTU201901387
dc.rights.note有償授權
dc.date.accepted2020-03-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
7.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved