請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63754完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林達德(Ta-Te Lin) | |
| dc.contributor.author | Shih-Jhong Yu | en |
| dc.contributor.author | 余世忠 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:18:16Z | - |
| dc.date.available | 2012-08-18 | |
| dc.date.copyright | 2012-08-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-16 | |
| dc.identifier.citation | Arulampalam M. S., S. Maskell, N. Gordon, and T. Clapp. 2002. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing 50(2):174-188.
Bagdanov A. D., A. del Bimbo, and F. Pernici. 2005. Acquisition of high-resolution images through on-line saccade sequence planning. Proceedings of the Third ACM International Workshop on Video Surveillance 121-130. Bagdanov A. D., A. del Bimbo, and W. Nunziati. 2006. Improving evidential quality of surveillance imagery through active face tracking. 18th International Conference on Pattern Recognition 3:1200-1203. Bay H., T. Tuytelaars, and L. Van Gool. 2006. Surf: Speeded up robust features. ECCV:404-417. Bradski G., and A. Kaehler. 2008. Learning OpenCV: Computer vision with the OpenCV library. 1 ed. Sebastopol:O'Reilly Media. Brown M., and D. G. Lowe. 2003. Recognising panoramas. IEEE International Conference on Computer Vision 1218-1225. Burt P. J., and E. H. Adelson. 1983. A multiresolution spline with application to image mosaics. ACM Transactions on Graphics 2(4):217-236. Challa S., M. R. Morelande, D. Mušicki, and R. J. Evans. 2011. Fundamentals of object tracking. 1 ed. Cambridge:Cambridge Univ Pr. Chen C. H., Y. Yao, D. Page, B. Abidi, A. Koschan, and M. Abidi. 2008. Heterogeneous fusion of omnidirectional and PTZ cameras for multiple object tracking. IEEE Transactions on Circuits and Systems for Video Technology 18(8):1052-1063. Cristani M., M. Farenzena, D. Bloisi, and V. Murino. 2010. Background subtraction for automated multisensor surveillance: a comprehensive review. EURASIP Journal on Advances in Signal Processing 2010:43. Cutler T. L., and D. E. Swann. 1999. Using remote photography in wildlife ecology: a review. Wildlife Society Bulletin 27:571-581. Davis J. 1998. Mosaics of scenes with moving objects. Proceedings of CVPR'98 354-360. Fischler M. A., and R. C. Bolles. 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6):381-395. Foote J., and D. Kimber. 2000. FlyCam: practical panoramic video and automatic camera control. IEEE International Conference on Multimedia and Expo 3:1419-1422. Hartley R., A. Zisserman, and I. ebrary. 2003. Multiple view geometry in computer vision Cambridge:Cambridge Univ Press. Irani M., and P. Anandan. 2000. About direct methods. In 'Vision Algorithms: Theory and Practice', ed. B. Triggs, A. Zisserman and R. Szeliski, 267-277, New York: Springer Berlin / Heidelberg. Kalman R. E. 1960. A new approach to linear filtering and prediction problems. Journal of basic Engineering 82(1):35-45. Kim K., T. H. Chalidabhongse, D. Harwood, and L. Davis. 2005. Real-time foreground–background segmentation using codebook model. Real-time imaging 11(3):172-185. Li M. H. 2006. Introduction to ecological monitoring. 1 ed. Taipei:Ming-Wen. Lowe D. G. 2004. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2):91-110. Mian A. 2008. Realtime face detection and tracking using a single pan, tilt, zoom camera. International Conference on Image and Vision Computing New Zealand 1-6. Pei J. C. 1998. An evaluation of using auto-trigger cameras to record activity patterns of wild animals. Taiwan Journal of Forest Science 13(4):317-324. Shek C., C. S. M. Chan, and Y. Wan. 2007. Camera trap survey of Hong Kong terrestrial mammals in 2002-06. Hong Kong. Biodiversity 15:1-11. Silveira L., A. T. A. Jacomo, and J. A. F. Diniz-Filho. 2003. Camera trap, line transect census and track surveys: a comparative evaluation. Biological Conservation 114(3):351-355. Stauffer C., and W. E. L. Grimson. 1999. Adaptive background mixture models for real-time tracking. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2:252. Szeliski R. 2006. Image alignment and stitching: A tutorial. Foundations and Trends in Computer Graphics and Vision 2(1):1-104. Szeliski R., and H. Y. Shum. 1997. Creating full view panoramic image mosaics and environment maps 251-258. Tang W. K., T. T. Wong, and P. A. Heng. 2005. A system for real-time panorama generation and display in tele-immersive applications. IEEE Transactions on Multimedia 7(2):280-292. Triggs B., P. McLauchlan, R. Hartley, and A. Fitzgibbon. 2000. Bundle adjustment - a modern synthesis. In 'Vision Algorithms: Theory and Practice', ed. B. Triggs, A. Zisserman and R. Szeliski, 153-177, New York: Springer Berlin / Heidelberg. Valera M., and S. A. Velastin. 2005. Intelligent distributed surveillance systems: a review. IEE Proceedings of Vision, Image and Signal Processing 152(2):192-204. Viola P., and M. J. Jones. 2004. Robust Real-Time Face Detection. International journal of computer vision 57(2):137-154. Xinding S., J. Foote, D. Kimber, and B. S. Manjunath. 2005. Region of interest extraction and virtual camera control based on panoramic video capturing. IEEE Transactions on Multimedia 7(5):981-990. Xu Y., and D. Song. 2010. Systems and algorithms for autonomous and scalable crowd surveillance using robotic PTZ cameras assisted by a wide-angle camera. Autonomous robots 29(1):53-66. Yao Y., A. Besma, and A. Mongi. 2006. Fusion of omnidirectional and PTZ cameras for accurate cooperative tracking. IEEE International Conference on Video and Signal Based Surveillance 46. Yilmaz A., O. Javed, and M. Shah. 2006. Object tracking: A survey. Acm Computing Surveys 38(4):13. Zhou X., R. T. Collins, T. Kanade, and P. Metes. 2003. A master-slave system to acquire biometric imagery of humans at distance. First ACM SIGMM International Workshop on Video Surveillance 113-120. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63754 | - |
| dc.description.abstract | 影像監視系統已經廣泛的應用於日常生活之中,其中主從式影像監視系統可以同時提供寬廣的影像和高清晰的影像。主控端攝影機負責監視寬廣的影像範圍,並且透過電腦控制被控端攝影機 (旋轉可變焦攝影機) 取得高清晰的影像。主控端攝影機通常是具備廣角鏡頭或是魚眼鏡頭的攝影機,但是影像會有嚴重變形以及解析度過低的問題。因此,本研究提出一種新的主控端攝影機架構,由八顆網路攝影機組成環場攝影機組,應用影像縫合技術,同時提供寬廣的視野、微小變形且高解析度的影像。另外,我們建立新的幾何對應技術,將環場攝影機的座標轉換成旋轉可變焦攝影機的座標,據以控制旋轉可變焦式攝影機擷取清晰的目標影像。此系統進行影像目標追蹤時引入了互動式多運動模型,增進預測所追蹤目標位置的能力,提高了取得高解析度影像的成功率。所建置的系統實際應用於行人監測與生態池監測,可以記錄目標物的高解析度影像以及記錄追蹤目標的移動軌跡,其中環場攝影機解析度達到4390 × 587像素,速度可以達到每秒10張影像。幾何座標對應方法誤差約為0.5度,整體取得高清晰影像以及軌跡紀錄成功率約為70%,而高解析度影像以及目標的移動軌跡有助於目標的行為分析。 | zh_TW |
| dc.description.abstract | Video surveillance has been widely used in various applications. The master-slave imaging system architecture can provide both a large field of view (FOV) and high resolution images. A master camera is responsible for monitoring large FOV, object detection, and guiding the slave camera. A slave camera is usually a pan-tilt-zoom (PTZ) camera, which rotates and zooms in to acquire high resolution images of targeted objects. In traditional approach, a camera with wide angle or fish-eye lens is usually used as the master camera. However, such an approach is limited in applications requiring high resolution image. Instead, we propose a new kind of master camera, which is a panoramic camera set integrated with eight webcams. We employ the panorama technology to provide video images with large FOV, low image distortion and high resolution simultaneously. Moreover, we develop a new geometrical mapping method to achieve coordinate transformation between the panoramic camera set and the PTZ camera. We also apply the interactive multiple model to improve the estimation of the targeted object state, which facilitates the PTZ camera to center on the targeted object for proper image acquisition. The proposed system has been applied to pedestrian and ecological pool monitoring to test its performance. The developed master-slave imaging system provides high resolution images and the trajectory of the targeted objects. The panoramic camera is capable of acquiring video images of 4390 × 587 resolution at rate of 10 fps. The mapping error is around 0.5 degree. The overall tracking rate is about 70%. The high resolution images and the recorded trajectories are useful in further analyses of the behaviors of targeted objects. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:18:16Z (GMT). No. of bitstreams: 1 ntu-101-R99631015-1.pdf: 44699903 bytes, checksum: 26850a7f2521b336e8bb88e914098499 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract ii Table of Contents iv List of Figures viii List of Tables xii Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Objectives 3 Chapter 2 Literature Review 5 2.1 Ecological Monitoring 5 2.2 Video Surveillance 7 2.3 Panoramic Stitching 11 2.3.1 Panoramic Image 11 2.3.2 Panoramic Video 13 2.4 Object Detection 15 2.5 Object Tracking 18 2.5.1 Filtering 19 2.5.2 Maneuvering Object Tracking 22 Chapter 3 Materials and Methods 24 3.1 System Architecture 25 3.1.1 Hardware 25 3.1.2 Software 27 3.2 Full View Panoramic Cameras 28 3.2.1 Camera Model 29 3.2.2 Feature Matching 31 3.2.3 Image Alignment 33 3.2.4 Image Blending 35 3.2.5 Speed Up Panoramic Image 36 3.3 Master-Slave Camera Architecture 38 3.3.1 Mapping 38 3.3.2 Object Detection 44 3.3.3 Object Tracking 46 3.3.4 Next Best Target (NBT) 48 3.3.5 PTZ Camera Control 50 3.4 Experimental Design 51 Chapter 4 Results and Discussions 53 4.1 Panoramic Camera 53 4.1.1 Panoramic image 53 4.1.2 Panoramic camera performance 58 4.2 Mapping 62 4.2.1 Pan and Tilt Mapping 62 4.2.2 Zoom Ratio 67 4.3 Object State Estimation 68 4.4 Experiment in Real Environment 73 4.4.1 Pedestrian Surveillance 73 4.4.2 Ecological Monitoring 88 4.4.3 Wugu Wetland 92 Chapter 5 Conclusions and Suggestions 96 5.1 Conclusions 96 5.2 Suggestions 97 References 98 | |
| dc.language.iso | en | |
| dc.subject | 主從式影像系統 | zh_TW |
| dc.subject | 生態監測 | zh_TW |
| dc.subject | 旋轉可變焦式攝影機 | zh_TW |
| dc.subject | 環場攝影機 | zh_TW |
| dc.subject | Master-slave imaging system | en |
| dc.subject | Panoramic Camera | en |
| dc.subject | PTZ camera | en |
| dc.subject | Ecological monitoring | en |
| dc.title | 主從式影像監測系統之研製與生態監測應用 | zh_TW |
| dc.title | A Study on Master-Slave Imaging System and Application for Ecological Monitoring | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江昭皚(Joe-Air Jiang),艾群(Chyung Ay) | |
| dc.subject.keyword | 主從式影像系統,環場攝影機,旋轉可變焦式攝影機,生態監測, | zh_TW |
| dc.subject.keyword | Master-slave imaging system,Panoramic Camera,PTZ camera,Ecological monitoring, | en |
| dc.relation.page | 93 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 43.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
