請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63750
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳示國(Shih-Kuo Chen) | |
dc.contributor.author | Chun-Hao Chien | en |
dc.contributor.author | 簡君豪 | zh_TW |
dc.date.accessioned | 2021-06-16T17:18:09Z | - |
dc.date.available | 2025-04-15 | |
dc.date.copyright | 2020-04-15 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-03-30 | |
dc.identifier.citation | Aho, V. T. E., P. A. B. Pereira, S. Voutilainen, L. Paulin, E. Pekkonen, P. Auvinen and F. Scheperjans (2019). 'Gut microbiota in Parkinson's disease: Temporal stability and relations to disease progression.' EBioMedicine 44: 691-707.10.1016/j.ebiom.2019.05.064 Al Nabhani, Z., G. Dietrich, J. P. Hugot and F. Barreau (2017). 'Nod2: The intestinal gate keeper.' PLoS Pathog 13(3): e1006177.10.1371/journal.ppat.1006177 Arumugam, M., J. Raes, E. Pelletier, D. Le Paslier, T. Yamada, D. R. Mende, G. R. Fernandes, J. Tap, T. Bruls, J. M. Batto, M. Bertalan, N. Borruel, F. Casellas, L. Fernandez, L. Gautier, T. Hansen, M. Hattori, T. Hayashi, M. Kleerebezem, K. Kurokawa, M. Leclerc, F. Levenez, C. Manichanh, H. B. Nielsen, T. Nielsen, N. Pons, J. Poulain, J. Qin, T. Sicheritz-Ponten, S. Tims, D. Torrents, E. Ugarte, E. G. Zoetendal, J. Wang, F. Guarner, O. Pedersen, W. M. de Vos, S. Brunak, J. Dore, H. I. T. C. Meta, M. Antolin, F. Artiguenave, H. M. Blottiere, M. Almeida, C. Brechot, C. Cara, C. Chervaux, A. Cultrone, C. Delorme, G. Denariaz, R. Dervyn, K. U. Foerstner, C. Friss, M. van de Guchte, E. Guedon, F. Haimet, W. Huber, J. van Hylckama-Vlieg, A. Jamet, C. Juste, G. Kaci, J. Knol, O. Lakhdari, S. Layec, K. Le Roux, E. Maguin, A. Merieux, R. Melo Minardi, C. M'Rini, J. Muller, R. Oozeer, J. Parkhill, P. Renault, M. Rescigno, N. Sanchez, S. Sunagawa, A. Torrejon, K. Turner, G. Vandemeulebrouck, E. Varela, Y. Winogradsky, G. Zeller, J. Weissenbach, S. D. Ehrlich and P. Bork (2011). 'Enterotypes of the human gut microbiome.' Nature 473(7346): 174-180.10.1038/nature09944 Atarashi, K., T. Tanoue, T. Shima, A. Imaoka, T. Kuwahara, Y. Momose, G. Cheng, S. Yamasaki, T. Saito, Y. Ohba, T. Taniguchi, K. Takeda, S. Hori, Ivanov, II, Y. Umesaki, K. Itoh and K. Honda (2011). 'Induction of colonic regulatory T cells by indigenous Clostridium species.' Science 331(6015): 337-341.10.1126/science.1198469 Azad, M. A. K., M. Sarker, T. Li and J. Yin (2018). 'Probiotic Species in the Modulation of Gut Microbiota: An Overview.' Biomed Res Int 2018: 9478630.10.1155/2018/9478630 Bae, K., X. Jin, E. S. Maywood, M. H. Hastings, S. M. Reppert and D. R. Weaver (2001). 'Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock.' Neuron 30(2): 525-536.10.1016/s0896-6273(01)00302-6 Balasubramanian, I. and N. Gao (2017). 'From sensing to shaping microbiota: insights into the role of NOD2 in intestinal homeostasis and progression of Crohn's disease.' Am J Physiol Gastrointest Liver Physiol 313(1): G7-G13.10.1152/ajpgi.00330.2016 Bass, J. and J. S. Takahashi (2010). 'Circadian integration of metabolism and energetics.' Science 330(6009): 1349-1354.10.1126/science.1195027 Bercik, P., E. Denou, J. Collins, W. Jackson, J. Lu, J. Jury, Y. Deng, P. Blennerhassett, J. Macri, K. D. McCoy, E. F. Verdu and S. M. Collins (2011). 'The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice.' Gastroenterology 141(2): 599-609, 609 e591-593.10.1053/j.gastro.2011.04.052 Braniste, V., M. Al-Asmakh, C. Kowal, F. Anuar, A. Abbaspour, M. Toth, A. Korecka, N. Bakocevic, L. G. Ng, P. Kundu, B. Gulyas, C. Halldin, K. Hultenby, H. Nilsson, H. Hebert, B. T. Volpe, B. Diamond and S. Pettersson (2014). 'The gut microbiota influences blood-brain barrier permeability in mice.' Sci Transl Med 6(263): 263ra158.10.1126/scitranslmed.3009759 Cai, W., Y. Ran, Y. Li, B. Wang and L. Zhou (2017). 'Intestinal microbiome and permeability in patients with autoimmune hepatitis.' Best Pract Res Clin Gastroenterol 31(6): 669-673.10.1016/j.bpg.2017.09.013 Calo, L., M. Wegrzynowicz, J. Santivanez-Perez and M. Grazia Spillantini (2016). 'Synaptic failure and alpha-synuclein.' Mov Disord 31(2): 169-177.10.1002/mds.26479 Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. G. Pena, J. K. Goodrich, J. I. Gordon, G. A. Huttley, S. T. Kelley, D. Knights, J. E. Koenig, R. E. Ley, C. A. Lozupone, D. McDonald, B. D. Muegge, M. Pirrung, J. Reeder, J. R. Sevinsky, P. J. Turnbaugh, W. A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld and R. Knight (2010). 'QIIME allows analysis of high-throughput community sequencing data.' Nat Methods 7(5): 335-336.10.1038/nmeth.f.303 Carabotti, M., A. Scirocco, M. A. Maselli and C. Severi (2015). 'The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems.' Annals of Gastroenterology 28: 203-209 Catalioto, R. M., C. A. Maggi and S. Giuliani (2011). 'Intestinal epithelial barrier dysfunction in disease and possible therapeutical interventions.' Curr Med Chem 18(3): 398-426.10.2174/092986711794839179 Chen, L. and G. Yang (2015). 'Recent advances in circadian rhythms in cardiovascular system.' Front Pharmacol 6: 71.10.3389/fphar.2015.00071 Claesson, M. J., Q. Wang, O. O'Sullivan, R. Greene-Diniz, J. R. Cole, R. P. Ross and P. W. O'Toole (2010). 'Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions.' Nucleic Acids Res 38(22): e200.10.1093/nar/gkq873 Comeau, A. M., G. M. Douglas and M. G. Langille (2017). 'Microbiome Helper: a Custom and Streamlined Workflow for Microbiome Research.' mSystems 2(1).10.1128/mSystems.00127-16 Cryan, J. F., K. J. O'Riordan, K. Sandhu, V. Peterson and T. G. Dinan (2020). 'The gut microbiome in neurological disorders.' Lancet Neurol 19(2): 179-194.10.1016/S1474-4422(19)30356-4 D'Argenio, V. and F. Salvatore (2015). 'The role of the gut microbiome in the healthy adult status.' Clin Chim Acta 451(Pt A): 97-102.10.1016/j.cca.2015.01.003 Dagher, A. and Y. Zeighami (2018). 'Testing the Protein Propagation Hypothesis of Parkinson Disease.' J Exp Neurosci 12: 1179069518786715.10.1177/1179069518786715 Damms-Machado, A., S. Mitra, A. E. Schollenberger, K. M. Kramer, T. Meile, A. Konigsrainer, D. H. Huson and S. C. Bischoff (2015). 'Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption.' Biomed Res Int 2015: 806248.10.1155/2015/806248 Dao, M. C., A. Everard, J. Aron-Wisnewsky, N. Sokolovska, E. Prifti, E. O. Verger, B. D. Kayser, F. Levenez, J. Chilloux, L. Hoyles, M. I.-O. Consortium, M. E. Dumas, S. W. Rizkalla, J. Dore, P. D. Cani and K. Clement (2016). 'Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology.' Gut 65(3): 426-436.10.1136/gutjnl-2014-308778 Del Tredici, K. and H. Braak (2008). 'A not entirely benign procedure: progression of Parkinson's disease.' Acta Neuropathol 115(4): 379-384.10.1007/s00401-008-0355-5 Dunlap, J. C. (1999). 'Molecular bases for circadian clocks.' Cell 96(2): 271-290.10.1016/s0092-8674(00)80566-8 Eastman, C. I., R. E. Mistlberger and A. Rechtschaffen (1984). 'Suprachiasmatic nuclei lesions eliminate circadian temperature and sleep rhythms in the rat.' Physiol Behav 32(3): 357-368.10.1016/0031-9384(84)90248-8 Eckburg, P. B., E. M. Bik, C. N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, S. R. Gill, K. E. Nelson and D. A. Relman (2005). 'Diversity of the human intestinal microbial flora.' Science 308(5728): 1635-1638.10.1126/science.1110591 Erny, D., A. L. Hrabe de Angelis, D. Jaitin, P. Wieghofer, O. Staszewski, E. David, H. Keren-Shaul, T. Mahlakoiv, K. Jakobshagen, T. Buch, V. Schwierzeck, O. Utermohlen, E. Chun, W. S. Garrett, K. D. McCoy, A. Diefenbach, P. Staeheli, B. Stecher, I. Amit and M. Prinz (2015). 'Host microbiota constantly control maturation and function of microglia in the CNS.' Nat Neurosci 18(7): 965-977.10.1038/nn.4030 Fabbiano, S., N. Suarez-Zamorano, C. Chevalier, V. Lazarevic, S. Kieser, D. Rigo, S. Leo, C. Veyrat-Durebex, N. Gaia, M. Maresca, D. Merkler, M. Gomez de Aguero, A. Macpherson, J. Schrenzel and M. Trajkovski (2018). 'Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements.' Cell Metab 28(6): 907-921 e907.10.1016/j.cmet.2018.08.005 Ferretti, P., E. Pasolli, A. Tett, F. Asnicar, V. Gorfer, S. Fedi, F. Armanini, D. T. Truong, S. Manara, M. Zolfo, F. Beghini, R. Bertorelli, V. De Sanctis, I. Bariletti, R. Canto, R. Clementi, M. Cologna, T. Crifo, G. Cusumano, S. Gottardi, C. Innamorati, C. Mase, D. Postai, D. Savoi, S. Duranti, G. A. Lugli, L. Mancabelli, F. Turroni, C. Ferrario, C. Milani, M. Mangifesta, R. Anzalone, A. Viappiani, M. Yassour, H. Vlamakis, R. Xavier, C. M. Collado, O. Koren, S. Tateo, M. Soffiati, A. Pedrotti, M. Ventura, C. Huttenhower, P. Bork and N. Segata (2018). 'Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome.' Cell Host Microbe 24(1): 133-145 e135.10.1016/j.chom.2018.06.005 Fitzgerald, E., S. Murphy and H. A. Martinson (2019). 'Alpha-Synuclein Pathology and the Role of the Microbiota in Parkinson's Disease.' Front Neurosci 13: 369.10.3389/fnins.2019.00369 Fraumene, C., V. Manghina, E. Cadoni, F. Marongiu, M. Abbondio, M. Serra, A. Palomba, A. Tanca, E. Laconi and S. Uzzau (2018). 'Caloric restriction promotes rapid expansion and long-lasting increase of Lactobacillus in the rat fecal microbiota.' Gut Microbes 9(2): 104-114.10.1080/19490976.2017.1371894 Gibson, G. R. and M. B. Roberfroid (1995). 'Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics.' The Journal of Nutrition 125(6): 1401-1412.10.1093/jn/125.6.1401 Golombek, D. A. and R. E. Rosenstein (2010). 'Physiology of circadian entrainment.' Physiol Rev 90(3): 1063-1102.10.1152/physrev.00009.2009 Greggio, E. (2012). 'Role of LRRK2 kinase activity in the pathogenesis of Parkinson's disease.' Biochem Soc Trans 40(5): 1058-1062.10.1042/BST20120054 Hau, M. and E. Gwinner (1996). 'Food as a circadian Zeitgeber for house sparrows: the effect of different food access durations.' J Biol Rhythms 11(3): 196-207.10.1177/074873049601100302 Henke, M. T., D. J. Kenny, C. D. Cassilly, H. Vlamakis, R. J. Xavier and J. Clardy (2019). 'Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn's disease, produces an inflammatory polysaccharide.' Proc Natl Acad Sci U S A 116(26): 12672-12677.10.1073/pnas.1904099116 Hsieh, C. S., S. E. Macatonia, C. S. Tripp, S. F. Wolf, A. O'Garra and K. M. Murphy (1993). 'Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages.' Science 260(5107): 547-549.10.1126/science.8097338 Huang, Y. J., Y. C. Pai and L. C. Yu (2018). 'Host-Microbiota Interaction and Intestinal Epithelial Functions under Circadian Control: Implications in Colitis and Metabolic Disorders.' Chin J Physiol 61(6): 325-340.10.4077/CJP.2018.BAH641 Hughes, M. E., J. B. Hogenesch and K. Kornacker (2010). 'JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets.' J Biol Rhythms 25(5): 372-380.10.1177/0748730410379711 Jiang, W., X. Wang, B. Zeng, L. Liu, A. Tardivel, H. Wei, J. Han, H. R. MacDonald, J. Tschopp, Z. Tian and R. Zhou (2013). 'Recognition of gut microbiota by NOD2 is essential for the homeostasis of intestinal intraepithelial lymphocytes.' J Exp Med 210(11): 2465-2476.10.1084/jem.20122490 Jilge, B. (1992). 'Restricted feeding: a nonphotic zeitgeber in the rabbit.' Physiol Behav 51(1): 157-166.10.1016/0031-9384(92)90218-q Kim, C., G. Lv, J. S. Lee, B. C. Jung, M. Masuda-Suzukake, C. S. Hong, E. Valera, H. J. Lee, S. R. Paik, M. Hasegawa, E. Masliah, D. Eliezer and S. J. Lee (2016). 'Exposure to bacterial endotoxin generates a distinct strain of alpha-synuclein fibril.' Sci Rep 6: 30891.10.1038/srep30891 Kuang, Z., Y. Wang, Y. Li, C. Ye, K. A. Ruhn, C. L. Behrendt, E. N. Olson and L. V. Hooper (2019). 'The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3.' Science 365(6460): 1428-1434.10.1126/science.aaw3134 Lee, M. K., W. Stirling, Y. Xu, X. Xu, D. Qui, A. S. Mandir, T. M. Dawson, N. G. Copeland, N. A. Jenkins and D. L. Price (2002). 'Human alpha-synuclein-harboring familial Parkinson's disease-linked Ala-53 --> Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice.' Proc Natl Acad Sci U S A 99(13): 8968-8973.10.1073/pnas.132197599 Leone, V., S. M. Gibbons, K. Martinez, A. L. Hutchison, E. Y. Huang, C. M. Cham, J. F. Pierre, A. F. Heneghan, A. Nadimpalli, N. Hubert, E. Zale, Y. Wang, Y. Huang, B. Theriault, A. R. Dinner, M. W. Musch, K. A. Kudsk, B. J. Prendergast, J. A. Gilbert and E. B. Chang (2015). 'Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism.' Cell Host Microbe 17(5): 681-689.10.1016/j.chom.2015.03.006 Levy, M., C. A. Thaiss and E. Elinav (2015). 'Metagenomic cross-talk: the regulatory interplay between immunogenomics and the microbiome.' Genome Med 7: 120.10.1186/s13073-015-0249-9 Ley, R. E., F. Backhed, P. Turnbaugh, C. A. Lozupone, R. D. Knight and J. I. Gordon (2005). 'Obesity alters gut microbial ecology.' Proc Natl Acad Sci U S A 102(31): 11070-11075.10.1073/pnas.0504978102 Ley, R. E., D. A. Peterson and J. I. Gordon (2006a). 'Ecological and evolutionary forces shaping microbial diversity in the human intestine.' Cell 124(4): 837-848.10.1016/j.cell.2006.02.017 Ley, R. E., P. J. Turnbaugh, S. Klein and J. I. Gordon (2006b). 'Microbial ecology: human gut microbes associated with obesity.' Nature 444(7122): 1022-1023.10.1038/4441022a Li, G., C. Xie, S. Lu, R. G. Nichols, Y. Tian, L. Li, D. Patel, Y. Ma, C. N. Brocker, T. Yan, K. W. Krausz, R. Xiang, O. Gavrilova, A. D. Patterson and F. J. Gonzalez (2017a). 'Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota.' Cell Metabolism 26: 672-685.10.1016/j.cmet.2017.08.019 Li, Q., Y. Han, A. B. C. Dy and R. J. Hagerman (2017b). 'The Gut Microbiota and Autism Spectrum Disorders.' Front Cell Neurosci 11: 120.10.3389/fncel.2017.00120 Liang, X., F. D. Bushman and G. A. FitzGerald (2014). 'Time in motion: the molecular clock meets the microbiome.' Cell 159(3): 469-470.10.1016/j.cell.2014.10.020 Liang, X., F. D. Bushman and G. A. FitzGerald (2015). 'Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock.' Proc Natl Acad Sci U S A 112(33): 10479-10484.10.1073/pnas.1501305112 Lukic, I., D. Getselter, O. Ziv, O. Oron, E. Reuveni, O. Koren and E. Elliott (2019). 'Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior.' Transl Psychiatry 9(1): 133.10.1038/s41398-019-0466-x Ma, L., R. Wang, W. Dong and Z. Zhao (2018). 'Caloric restriction can improve learning and memory in C57/BL mice probably via regulation of the AMPK signaling pathway.' Exp Gerontol 102: 28-35.10.1016/j.exger.2017.11.013 Manchishi, S. M., R. J. Cui, X. H. Zou, Z. Q. Cheng and B. J. Li (2018). 'Effect of caloric restriction on depression.' J Cell Mol Med 22(5): 2528-2535.10.1111/jcmm.13418 Manfredsson, F. P., K. C. Luk, M. J. Benskey, A. Gezer, J. Garcia, N. C. Kuhn, I. M. Sandoval, J. R. Patterson, A. O'Mara, R. Yonkers and J. H. Kordower (2018). 'Induction of alpha-synuclein pathology in the enteric nervous system of the rat and non-human primate results in gastrointestinal dysmotility and transient CNS pathology.' Neurobiol Dis 112: 106-118.10.1016/j.nbd.2018.01.008 Martin, C. R., V. Osadchiy, A. Kalani and E. A. Mayer (2018). 'The Brain-Gut-Microbiome Axis.' Cell Mol Gastroenterol Hepatol 6(2): 133-148.10.1016/j.jcmgh.2018.04.003 Miller, B. H., S. L. Olson, F. W. Turek, J. E. Levine, T. H. Horton and J. S. Takahashi (2004). 'Circadian clock mutation disrupts estrous cyclicity and maintenance of pregnancy.' Curr Biol 14(15): 1367-1373.10.1016/j.cub.2004.07.055 Mrosovsky, N. (1988). 'Phase response curves for social entrainment.' J Comp Physiol A 162(1): 35-46.10.1007/bf01342701 Naito, Y., K. Uchiyama and T. Takagi (2018). 'A next-generation beneficial microbe: Akkermansia muciniphila.' J Clin Biochem Nutr 63(1): 33-35.10.3164/jcbn.18-57 Obrenovich, M. E. M. (2018). 'Leaky Gut, Leaky Brain?' Microorganisms 6(4).10.3390/microorganisms6040107 Paumier, K. L., K. C. Luk, F. P. Manfredsson, N. M. Kanaan, J. W. Lipton, T. J. Collier, K. Steece-Collier, C. J. Kemp, S. Celano, E. Schulz, I. M. Sandoval, S. Fleming, E. Dirr, N. K. Polinski, J. Q. Trojanowski, V. M. Lee and C. E. Sortwell (2015). 'Intrastriatal injection of pre-formed mouse alpha-synuclein fibrils into rats triggers alpha-synuclein pathology and bilateral nigrostriatal degeneration.' Neurobiol Dis 82: 185-199.10.1016/j.nbd.2015.06.003 Peelaerts, W., L. Bousset, A. Van der Perren, A. Moskalyuk, R. Pulizzi, M. Giugliano, C. Van den Haute, R. Melki and V. Baekelandt (2015). 'alpha-Synuclein strains cause distinct synucleinopathies after local and systemic administration.' Nature 522(7556): 340-344.10.1038/nature14547 Petersen, C., R. Bell, K. A. Klag, S. H. Lee, R. Soto, A. Ghazaryan, K. Buhrke, H. A. Ekiz, K. S. Ost, S. Boudina, R. M. O'Connell, J. E. Cox, C. J. Villanueva, W. Z. Stephens and J. L. Round (2019). 'T cell-mediated regulation of the microbiota protects against obesity.' Science 365(6451).10.1126/science.aat9351 Petnicki-Ocwieja, T., T. Hrncir, Y. J. Liu, A. Biswas, T. Hudcovic, H. Tlaskalova-Hogenova and K. S. Kobayashi (2009). 'Nod2 is required for the regulation of commensal microbiota in the intestine.' Proc Natl Acad Sci U S A 106(37): 15813-15818.10.1073/pnas.0907722106 Pickard, J. M., M. Y. Zeng, R. Caruso and G. Nunez (2017). 'Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease.' Immunol Rev 279(1): 70-89.10.1111/imr.12567 Piper, M. D. and A. Bartke (2008). 'Diet and aging.' Cell Metab 8(2): 99-104.10.1016/j.cmet.2008.06.012 Plovier, H., A. Everard, C. Druart, C. Depommier, M. Van Hul, L. Geurts, J. Chilloux, N. Ottman, T. Duparc, L. Lichtenstein, A. Myridakis, N. M. Delzenne, J. Klievink, A. Bhattacharjee, K. C. van der Ark, S. Aalvink, L. O. Martinez, M. E. Dumas, D. Maiter, A. Loumaye, M. P. Hermans, J. P. Thissen, C. Belzer, W. M. de Vos and P. D. Cani (2017). 'A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice.' Nat Med 23(1): 107-113.10.1038/nm.4236 Polymeropoulos, M. H., C. Lavedan, E. Leroy, S. E. Ide, A. Dehejia, A. Dutra, B. Pike, H. Root, J. Rubenstein, R. Boyer, E. S. Stenroos, S. Chandrasekharappa, A. Athanassiadou, T. Papapetropoulos, W. G. Johnson, A. M. Lazzarini, R. C. Duvoisin, G. Di Iorio, L. I. Golbe and R. L. Nussbaum (1997). 'Mutation in the alpha-synuclein gene identified in families with Parkinson's disease.' Science 276(5321): 2045-2047.10.1126/science.276.5321.2045 Pott, J. and M. Hornef (2012). 'Innate immune signalling at the intestinal epithelium in homeostasis and disease.' EMBO Rep 13(8): 684-698.10.1038/embor.2012.96 Preidis, G. A., N. J. Ajami, M. C. Wong, B. C. Bessard, M. E. Conner and J. F. Petrosino (2015). 'Composition and function of the undernourished neonatal mouse intestinal microbiome.' J Nutr Biochem 26(10): 1050-1057.10.1016/j.jnutbio.2015.04.010 Rehman, A., C. Sina, O. Gavrilova, R. Hasler, S. Ott, J. F. Baines, S. Schreiber and P. Rosenstiel (2011). 'Nod2 is essential for temporal development of intestinal microbial communities.' Gut 60(10): 1354-1362.10.1136/gut.2010.216259 Riva, A., F. Borgo, C. Lassandro, E. Verduci, G. Morace, E. Borghi and D. Berry (2017). 'Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations.' Environ Microbiol 19(1): 95-105.10.1111/1462-2920.13463 Rodrigues-Amorim, D., T. Rivera-Baltanas, B. Regueiro, C. Spuch, M. E. de Las Heras, R. Vazquez-Noguerol Mendez, M. Nieto-Araujo, C. Barreiro-Villar, J. M. Olivares and R. C. Agis-Balboa (2018). 'The role of the gut microbiota in schizophrenia: Current and future perspectives.' World J Biol Psychiatry 19(8): 571-585.10.1080/15622975.2018.1433878 Rooks, M. G. and W. S. Garrett (2016). 'Gut microbiota, metabolites and host immunity.' Nat Rev Immunol 16(6): 341-352.10.1038/nri.2016.42 Russo, M., E. Fabersani, M. C. Abeijon-Mukdsi, R. Ross, C. Fontana, A. Benitez-Paez, P. Gauffin-Cano and R. B. Medina (2016). 'Lactobacillus fermentum CRL1446 Ameliorates Oxidative and Metabolic Parameters by Increasing Intestinal Feruloyl Esterase Activity and Modulating Microbiota in Caloric-Restricted Mice.' Nutrients 8(7).10.3390/nu8070415 Saiki, S., S. Sato and N. Hattori (2012). 'Molecular pathogenesis of Parkinson's disease: update.' J Neurol Neurosurg Psychiatry 83(4): 430-436.10.1136/jnnp-2011-301205 Saji, N., S. Niida, K. Murotani, T. Hisada, T. Tsuduki, T. Sugimoto, A. Kimura, K. Toba and T. Sakurai (2019). 'Analysis of the relationship between the gut microbiome and dementia: a cross-sectional study conducted in Japan.' Sci Rep 9(1): 1008.10.1038/s41598-018-38218-7 Sampson, T. R., J. W. Debelius, T. Thron, S. Janssen, G. G. Shastri, Z. E. Ilhan, C. Challis, C. E. Schretter, S. Rocha, V. Gradinaru, M. F. Chesselet, A. Keshavarzian, K. M. Shannon, R. Krajmalnik-Brown, P. Wittung-Stafshede, R. Knight and S. K. Mazmanian (2016). 'Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease.' Cell 167(6): 1469-1480 e1412.10.1016/j.cell.2016.11.018 Sehadova, H., F. T. Glaser, C. Gentile, A. Simoni, A. Giesecke, J. T. Albert and R. Stanewsky (2009). 'Temperature entrainment of Drosophila's circadian clock involves the gene nocte and signaling from peripheral sensory tissues to the brain.' Neuron 64(2): 251-266.10.1016/j.neuron.2009.08.026 Semova, I., J. D. Carten, J. Stombaugh, L. C. Mackey, R. Knight, S. A. Farber and J. F. Rawls (2012). 'Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish.' Cell Host Microbe 12(3): 277-288.10.1016/j.chom.2012.08.003 Sharma, S. and P. Tripathi (2019). 'Gut microbiome and type 2 diabetes: where we are and where to go?' J Nutr Biochem 63: 101-108.10.1016/j.jnutbio.2018.10.003 Sprong, R. C., A. J. Schonewille and R. van der Meer (2010). 'Dietary cheese whey protein protects rats against mild dextran sulfate sodium-induced colitis: role of mucin and microbiota.' J Dairy Sci 93(4): 1364-1371.10.3168/jds.2009-2397 Steed, A. L., G. P. Christophi, G. E. Kaiko, L. Sun, V. M. Goodwin, U. Jain, E. Esaulova, M. N. Artyomov, D. J. Morales, M. J. Holtzman, A. C. M. Boon, D. J. Lenschow and T. S. Stappenbeck (2017). 'The microbial metabolite desaminotyrosine protects from influenza through type I interferon.' Science 357(6350): 498-502.10.1126/science.aam5336 Stokkan, K. A., S. Yamazaki, H. Tei, Y. Sakaki and M. Menaker (2001). 'Entrainment of the circadian clock in the liver by feeding.' Science 291(5503): 490-493.10.1126/science.291.5503.490 Sudo, N. (2019). 'Role of gut microbiota in brain function and stress-related pathology.' Biosci Microbiota Food Health 38(3): 75-80.10.12938/bmfh.19-006 Takahashi, J. S. (2004). 'Finding new clock components: past and future.' J Biol Rhythms 19(5): 339-347.10.1177/0748730404269151 Talani, G., F. Biggio, M. C. Mostallino, V. Locci, C. Porcedda, L. Boi, E. Saolini, R. Piras, E. Sanna and G. Biggio (2020). 'Treatment with gut bifidobacteria improves hippocampal plasticity and cognitive behavior in adult healthy rats.' Neuropharmacology 165: 107909.10.1016/j.neuropharm.2019.107909 Teng, L. L., G. L. Lu, L. C. Chiou, W. S. Lin, Y. Y. Cheng, T. E. Hsueh, Y. C. Huang, N. H. Hwang, J. W. Yeh, R. M. Liao, S. Z. Fan, J. H. Yen, T. F. Fu, T. F. Tsai, M. S. Wu and P. Y. Wang (2019). 'Serotonin receptor HTR6-mediated mTORC1 signaling regulates dietary restriction-induced memory enhancement.' PLoS Biol 17(3): e2007097.10.1371/journal.pbio.2007097 Terada, M., G. Suzuki, T. Nonaka, F. Kametani, A. Tamaoka and M. Hasegawa (2018). 'The effect of truncation on prion-like properties of alpha-synuclein.' J Biol Chem 293(36): 13910-13920.10.1074/jbc.RA118.001862 Thaiss, C. A., M. Levy, T. Korem, L. Dohnalova, H. Shapiro, D. A. Jaitin, E. David, D. R. Winter, M. Gury-BenAri, E. Tatirovsky, T. Tuganbaev, S. Federici, N. Zmora, D. Zeevi, M. Dori-Bachash, M. Pevsner-Fischer, E. Kartvelishvily, A. Brandis, A. Harmelin, O. Shibolet, Z. Halpern, K. Honda, I. Amit, E. Segal and E. Elinav (2016a). 'Microbiota Diurnal Rhythmicity Programs Host Transcriptome Oscillations.' Cell 167(6): 1495-1510 e1412.10.1016/j.cell.2016.11.003 Thaiss, C. A., D. Zeevi, M. Levy, G. Zilberman-Schapira, J. Suez, A. C. Tengeler, L. Abramson, M. N. Katz, T. Korem, N. Zmora, Y. Kuperman, I. Biton, S. Gilad, A. Harmelin, H. Shapiro, Z. Halpern, E. Segal and E. Elinav (2014). 'Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis.' Cell 159(3): 514-529.10.1016/j.cell.2014.09.048 Thaiss, C. A., N. Zmora, M. Levy and E. Elinav (2016b). 'The microbiome and innate immunity.' Nature 535(7610): 65-74.10.1038/nature18847 Turnbaugh, P. J., M. Hamady, T. Yatsunenko, B. L. Cantarel, A. Duncan, R. E. Ley, M. L. Sogin, W. J. Jones, B. A. Roe, J. P. Affourtit, M. Egholm, B. Henrissat, A. C. Heath, R. Knight and J. I. Gordon (2009). 'A core gut microbiome in obese and lean twins.' Nature 457(7228): 480-484.10.1038/nature07540 Valdes, A. M., J. Walter, E. Segal and T. D. Spector (2018). 'Role of the gut microbiota in nutrition and health.' BMJ 361: k2179.10.1136/bmj.k2179 Vital, M., A. C. Howe and J. M. Tiedje (2014). 'Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data.' mBio 5(2): e00889.10.1128/mBio.00889-14 Wang, H., X. Zhang, Z. Zuo, Q. Zhang, Y. Pan, B. Zeng, W. Li, H. Wei and Z. Liu (2017). 'Rip2 Is Required for Nod2-Mediated Lysozyme Sorting in Paneth Cells.' J Immunol 198(9): 3729-3736.10.4049/jimmunol.1601583 Wang, S., M. Huang, X. You, J. Zhao, L. Chen, L. Wang, Y. Luo and Y. Chen (2018). 'Gut microbiota mediates the anti-obesity effect of calorie restriction in mice.' Sci Rep 8(1): 13037.10.1038/s41598-018-31353-1 Witte, A. V., M. Fobker, R. Gellner, S. Knecht and A. Floel (2009). 'Caloric restriction improves memory in elderly humans.' Proc Natl Acad Sci U S A 106(4): 1255-1260.10.1073/pnas.0808587106 Wu, G., W. Tang, Y. He, J. Hu, S. Gong, Z. He, G. Wei, L. Lv, Y. Jiang, H. Zhou and P. Chen (2018). 'Light exposure influences the diurnal oscillation of gut microbiota in mice.' Biochem Biophys Res Commun 501(1): 16-23.10.1016/j.bbrc.2018.04.095 Yagita, K., F. Tamanini, G. T. van Der Horst and H. Okamura (2001). 'Molecular mechanisms of the biological clock in cultured fibroblasts.' Science 292(5515): 278-281.10.1126/science.1059542 Yamamoto, T., Y. Nakahata, H. Soma, M. Akashi, T. Mamine and T. Takumi (2004). 'Transcriptional oscillation of canonical clock genes in mouse peripheral tissues.' BMC Mol Biol 5: 18.10.1186/1471-2199-5-18 Yoo, S. H., S. Yamazaki, P. L. Lowrey, K. Shimomura, C. H. Ko, E. D. Buhr, S. M. Siepka, H. K. Hong, W. J. Oh, O. J. Yoo, M. Menaker and J. S. Takahashi (2004). 'PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues.' Proc Natl Acad Sci U S A 101(15): 5339-5346.10.1073/pnas.0308709101 Zarrinpar, A., A. Chaix, S. Yooseph and S. Panda (2014). 'Diet and feeding pattern affect the diurnal dynamics of the gut microbiome.' Cell Metab 20(6): 1006-1017.10.1016/j.cmet.2014.11.008 Zhang, C., S. Li, L. Yang, P. Huang, W. Li, S. Wang, G. Zhao, M. Zhang, X. Pang, Z. Yan, Y. Liu and L. Zhao (2013a). 'Structural modulation of gut microbiota in life-long calorie-restricted mice.' Nat Commun 4: 2163.10.1038/ncomms3163 Zhang, X., D. Shen, Z. Fang, Z. Jie, X. Qiu, C. Zhang, Y. Chen and L. Ji (2013b). 'Human gut microbiota changes reveal the progression of glucose intolerance.' PLoS One 8(8): e71108.10.1371/journal.pone.0071108 Zheng, X., S. Wang and W. Jia (2018). 'Calorie restriction and its impact on gut microbial composition and global metabolism.' Front Med 12(6): 634-644.10.1007/s11684-018-0670-8 Zuo, T. and S. C. Ng (2018). 'The Gut Microbiota in the Pathogenesis and Therapeutics of Inflammatory Bowel Disease.' Front Microbiol 9: 2247.10.3389/fmicb.2018.02247 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63750 | - |
dc.description.abstract | 腸道菌 (gut microbiota) 是腸道中微生物的總稱,其組成與週期性受外在刺激與宿主的調控,也能影響宿主的多種生理功能,包含代謝、免疫系統與神經系統等。過去研究發現,腸道菌相的組成受到宿主與外在環境的影響,如基因與飲食。每日飲食熱量即是一種外界刺激,卡洛里限制飲食 (calorie restriction) 過去被發現能影響腸道菌相與週期性,也能提升記憶能力,但其中的關聯性並不清楚。本研究利用抗生素處理 (antibiotic treatment) 與糞便微生物移植 (fecal microbiota treatment) 調控腸道菌相,結合次世代定序 (Next Generation Sequencing) 及多種行為測試,發現限制飲食熱量的方式,會藉由改變腸道菌的組成與週期性,而提升小鼠的記憶能力。 除了飲食,光線亦是一種外界刺激,可調控腸道菌的組成與週期性。我們將野生型小鼠與基因轉殖鼠 (Lrrk2G2019S)飼養於不同光照週期下,發現迴腸的表皮細胞參與光線對於腸道菌週期性調控之可能性。此外,我們將帕金森氏症 (Parkinson’s disease) 模式小鼠 (SNCAA53T) 飼養於異常的光照週期,發現腸道菌的改變早於行為病症病狀出現之前,且帕金森氏鼠與控制組小鼠的腸道菌相差異會隨著病症進展而增加。 整體而言,此研究證實了腸道菌於卡洛里限制飲食提升記憶能力之角色,也揭示腸道菌與帕金森氏症病人中突觸核蛋白 (α-synuclein) 異常沈積具雙向調控的可能性,更為宿主調控腸道菌週期性的機制提供新研究方向。 | zh_TW |
dc.description.abstract | The composition and rhythmicity of the gut microbiota, referring to all microorganism in the gut, affects physiological functions of the host, such as metabolism, immune system, and nervous system. It has been shown that internal and external cues can both regulate the composition of the gut microbiota, such as the host genetic background and food intake, respectively. Calorie restriction (CR) is reported as one of the environmental cues to influence the composition and rhythmicity of the gut microbiota, as well as elevate memory with unknown mechanism. In this study, we showed that gut microbiota modulation such as antibiotics treatment or fecal microbiota transplantation could influence the memory enhancement effect in mice. Combining Next Generation Sequencing and several behavior tests, we validate that CR improves memory of mice via the modification on the gut microbial composition and rhythmicity. Besides, light is also an environmental cue, which influences the composition and rhythmicity of the gut microbiota. By keeping the WT and Lrrk2G2019S mice under different light-dark cycle, we demonstrate the epithelium cells in the ileum may potentially participate in the gut microbiota rhythmicity regulation via NOD2 pathway. Furthermore, our preliminary results showed that the gut microbial variation initiates before the presence of motor disability in SNCAA53T mice, a Parkinson’s disease (PD) mice model. And the gut microbial difference between PD and control mice increases with PD progression. Overall, our study validates the role of the gut microbiota in the CR-induced memory enhancement. We also demonstrate the possible reciprocal regulation between the gut microbiota and the aberrant α-synuclein accumulation in PD subjects. In addition, this study reveals a novel perspective in the regulation of the gut microbiota rhythmicity by the host. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:18:09Z (GMT). No. of bitstreams: 1 ntu-109-R07b21005-1.pdf: 10521551 bytes, checksum: 0a0debf12493ae96a332b876897a1fbf (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員審定書 ii 致 謝 iii 摘 要 iv Abstract v Contents vii Chapter I Introduction 1 1.1 Circadian rhythm 1 1.1.1 Overview of the circadian rhythm 1 1.1.2 Molecular clock of the circadian rhythm 2 1.1.3 The central and peripheral clock of the circadian system 3 1.2 Gut microbiota 4 1.2.1 The composition of the gut microbiota 5 1.2.2 The rhythmicity of the gut microbiota 7 1.2.3 The gut microbiota and the immune system 9 1.2.4 The gut microbiota and Parkinson’s Disease (PD) 12 1.3 Calorie restriction (CR) 15 1.3.1 CR and the gut microbiota 15 1.3.2 CR and health 16 Statement of Purpose 19 Chapter II Materials and Methods 21 2.1 Animals 21 2.2 Experimental design 22 2.2.1 The relationship of the gut microbiota and CR-induced memory enhancement 22 2.2.2 The transformation of the gut microbiota in PD disease mice model 23 2.2.3 The regulation of the gut microbiota rhythmicity through NOD2 pathway 24 2.3 Illumina MiSeq sequencing 25 2.3.1 Total fecal DNA extraction 25 2.3.2 16S metagenomic library preparation 26 2.3.3 Pooling and quality control 28 2.3.4 Next Generation Sequencing (NGS) 29 2.4 Microbiota sequence analysis 29 2.4.1 Sequence assembling and identification 29 2.4.2 Composition analysis 31 2.4.3 Diversity analysis 31 2.4.4 Microbe abundance analysis 32 2.4.5 Circadian analysis of microbial oscillations 32 2.5 Quantification of the gut microbe 33 2.5.1 Standard preparation 33 2.5.2 Quantitative real-time polymerase chain reaction (qPCR) 34 2.6 Fecal microbiota transplantation (FMT) 35 2.7 Quantification of gene expression 35 2.7.1 RNA extraction 35 2.7.2 Reverse transcription 37 2.7.3 qPCR 37 2.8 Novel object recognition test (NOR) 38 2.9 Three chamber social test (3CH) 38 2.10 Open field test 39 2.11 Beam balance test 40 2.12 Rotarod test 41 2.13 Immunocytochemistry 42 2.13.1 Brain collection 42 2.13.2 Immunocytochemistry 42 2.13.3 Analysis of the PER2-positive cell number in the SCN 43 2.14 Statistical analysis 43 Chapter III Results - The Relationship of the Gut Microbiota and CR-induced Memory Enhancement 45 3.1 The gut microbiota is different between CR and ad libitum (AL) 45 3.2 The gut microbiota is involved in CR-induced memory enhancement 47 3.3 Rhythmicity is probably not involved in CR-improved memory 52 Chapter IV Results - The Transformation of the Gut Microbiota in PD Mice Model 55 4.1 PD progression in SNCAA53T mice (HET) is accelerated 55 4.2 Gut microbial variation starts at early pre-symptom stage and increases with PD progression 56 Chapter V Results - The Regulation of the Gut Microbiota Rhythmicity through NOD2 Pathway 59 5.1 Nod2 expresses in a circadian manner 59 5.2 The role of NOD2 pathway in the regulation of light on the gut microbiota rhythmicity needs further investigation 60 Chapter VI Discussion 63 6.1 The participation of the gut microbiota in CR-induced memory enhancement 63 6.2 The gut microbiota rhythmicity and CR-induced memory enhancement. 64 6.3 The biological meaning of ⍺ and β diversity 65 6.4 The gut microbial candidates in the CR-enhanced memory 67 6.5 The possible reciprocal regulation of the gut microbiota and α-synuclein accumulation in the gut 70 6.6 NOD2 pathway potentially regulates the rhythmicity of the gut microbiota 73 Significance of the Work 75 References 77 Figures 91 Figure 1. Experimental design of Chapter III (1). 91 Figure 2. The composition of the gut microbiota of mice treated with CR or ad libitum (AL). 92 Figure 3. The phylum level relative abundance of the gut microbiota of AL and CR mice. 93 Figure 4. The diversity of the gut microbiota of AL and CR mice. 94 Figure 5. Abundance analysis of the gut microbiota of AL and CR mice. 95 Figure 6. Circadian rhythmicity profile of the gut microbiota of AL and CR mice. 96 Figure 7. Quantification of total gut microbe abundance in the gut microbiota of mice treated with AL, CR, AL plus antibiotics cocktail (ALA) and CR plus antibiotics cocktail (CRA). 97 Figure 8. The results of novel object recognition test (NOR) of mice treated with AL or CR plus water or antibiotics cocktail (Abx). 98 Figure 9. The results of three chamber social test (3CH) of mice treated with AL or CR plus water or Abx. 99 Figure 10. Experimental design of Chapter III (2). 101 Figure 11. The composition of the gut microbiota of mice treated with AL, CR, AL plus AL fecal (FAL) and AL plus CR fecal (FCR) during the experiments. 102 Figure 12. Experimental design of Chapter III (3). 103 Figure 13. The composition of the gut microbiota of AL, CR, FAL and FCR mice. 104 Figure 14. The phylum level relative abundance of the gut microbiota of FAL and FCR mice. 105 Figure 15. The diversity of the gut microbiota of FAL and FCR mice. 106 Figure 16. Abundance analysis of the gut microbiota of FAL and FCR mice. 107 Figure 17. Circadian rhythmicity profile of the gut microbiota of FAL and FCR mice. 108 Figure 18. The results of NOR of FAL and FCR mice. 109 Figure 19. The results of 3CH of FAL and FCR mice. 110 Figure 20. The linear regression of the rhythmicity and discrimination index of NOR. 111 Figure 21. The linear regression of the rhythmicity and discrimination index of 3CH. 112 Figure 22. The linear regression of the genera and discrimination index of NOR. 113 Figure 23. The linear regression of the genera and discrimination index of 3CH. 114 Figure 24. Experimental design of Chapter III (4). 115 Figure 25. Circadian rhythmicity profile of the gut microbiota of mice treated with CR and kept under normal 12h/12h light-dark cycle (LDC) or constant dark environment (DDC). 116 Figure 26. The results of NOR of LDC and DDC mice. 117 Figure 27. The results of 3CH of LDC and DDC mice. 118 Figure 28. The composition of the gut microbiota of LDC and DDC mice. 119 Figure 29. The phylum level relative abundance of the gut microbiota of LDC and DDC mice. 120 Figure 30. The diversity of the gut microbiota of LDC and DDC mice. 121 Figure 31. Abundance analysis of the gut microbiota of LDC and DDC mice. 122 Figure 32. Experimental design of Chapter IV. 123 Figure 33. The results of Open Field Test of HET and NTG mice. 124 Figure 34. The results of rotarod test and beam balance test of HET and NTG mice. 125 Figure 35. The composition of the gut microbiota of HET and NTG mice at different age. 126 Figure 36. The phylum level relative abundance of the gut microbiota of HET and NTG mice at different age. 127 Figure 37. The diversity of the gut microbiota of HET and NTG mice. 128 Figure 38. Abundance analysis of the gut microbiota of HET and NTG mice. 129 Figure 39. Circadian rhythmicity profile of the gut microbiota of HET and NTG mice. 130 Figure 40. Experimental design of Chapter V (1). 131 Figure 41. Quantification of expression of Nod1, Nod2, Rab1a, Rab2a and Lrrk2 in the ileum of WT mice. 132 Figure 42. Quantification of expression of Nod2 in the ileum of WT mice. 133 Figure 43. Experimental design of Chapter V (2). 134 Figure 44. Representative figures of PER2-expressing cells in the suprachiasmatic nucleus (SCN) of Lrrk2G2019S (HETL) mice and Lrrk2NTG (NTGL) mice. 135 Figure 45. Quantification of PER2-positive cell number in the SCN of HETL mice and NTGL mice under different light treatments. 136 Figure 46. The composition of the gut microbiota of HETL and NTGL mice under different light treatments. 137 Figure 47. The phylum level relative abundance of the gut microbiota of HETL and NTGL mice at different light treatments. 138 Figure 48. The diversity of the gut microbiota of HETL and NTGL mice. 139 Figure 49. Abundance analysis of the gut microbiota of HETL and NTGL mice. 141 Figure 50. Circadian rhythmicity profile of the gut microbiota of HETL and NTGL mice. 142 Tables 143 Table 1. Primers used in metagenomics sample preparation 143 Table 2. Primers of Nextera® Index 144 Table 3. Primer List of the Preparation of Standard DNA 145 Table 4. Primer List of the Gut Microbe Quantification 146 Table 5. Primer List of the Gene Expression Quantification 147 Appendix I 16S Metagenomic Analysis Pipeline 149 Appendix II Posters 155 Poster 1. 2019 Poster of United Exhibition, College of Life Science, National Taiwan University, Taiwan 155 Poster 2. 2019 Taiwanese Society of Developmental Biology Retreat, Taiwanese Society of Developmental Biology, Taiwan 156 Poster 3. 2019 Taiwan Neuroscience Society Annual Meeting, Taiwan Neuroscience Society, Taiwan 157 Poster 4. 2019 Tsukuba Conference, University of Tsukuba, Japan 158 Poster 5. 2019 Annual Meeting Society For Neuroscience, Society For Neuroscience, United States of America 159 | |
dc.language.iso | en | |
dc.title | 腸道菌於卡洛里限制飲食提升記憶能力與帕金森氏症之研究 | zh_TW |
dc.title | The Study of the Gut Microbiota in Calorie-restriction-induced Memory Enhancement and Parkinson’s Disease | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王培育(Pei-Yu Wang),林靜嫻(Chin-Hsien Lin),江皓森(Hao-Sen Chiang),周銘翊(Ming-Yi Chou) | |
dc.subject.keyword | 腸道菌,生理時鐘,卡洛里限制飲食,學習型記憶,帕金森氏症, | zh_TW |
dc.subject.keyword | gut microbiota,circadian rhythm,calorie restriction,learning memory,Parkinson’s disease, | en |
dc.relation.page | 159 | |
dc.identifier.doi | 10.6342/NTU202000715 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-03-30 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生命科學系 | zh_TW |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 10.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。