Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63737
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻(Tai-Horng Young)
dc.contributor.authorHui-Wen Huangen
dc.contributor.author黃匯雯zh_TW
dc.date.accessioned2021-06-16T17:17:42Z-
dc.date.available2017-08-22
dc.date.copyright2012-08-22
dc.date.issued2012
dc.date.submitted2012-08-17
dc.identifier.citation1.Chen, C.S., et al., Geometric control of cell life and death. Science, 1997. 276(5317): p. 1425-1428.
2.Folkman, J. and A. Moscona, Role of Cell-Shape in Growth-Control. Nature, 1978. 273(5661): p. 345-349.
3.Singhvi, R., et al., Engineering Cell-Shape and Function. Science, 1994. 264(5159): p. 696-698.
4.Watt, F.M., P.W. Jordan, and C.H. Oneill, Cell-Shape Controls Terminal Differentiation of Human Epidermal-Keratinocytes. Proceedings of the National Academy of Sciences of the United States of America, 1988. 85(15): p. 5576-5580.
5.Aulthouse, A.L., Prolonged Exposure of Human Chondrocytes to Ascorbic-Acid Modifies Cellular Behavior in an Agarose-Gel. Anatomical Record, 1994. 238(1): p. 31-37.
6.Aubin, J.E., et al., Osteoblast and Chondroblast Differentiation. Bone, 1995. 17(2): p. S77-S83.
7.Lelievre, S.A., et al., Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 1998. 95(25): p. 14711-14716.
8.Thomas, C.H., et al., Engineering gene expression and protein synthesis by modulation of nuclear shape. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(4): p. 1972-1977.
9.Niidome, T. and L. Huang, Gene therapy progress and prospects: Nonviral vectors. Gene Therapy, 2002. 9(24): p. 1647-1652.
10.Herweijer, H. and J.A. Wolff, Progress and prospects: naked DNA gene transfer and therapy. Gene Therapy, 2003. 10(6): p. 453-458.
11.Wong, S.Y., J.M. Pelet, and D. Putnam, Polymer systems for gene delivery-past, present, and future. Progress in Polymer Science, 2007. 32(8-9): p. 799-837.
12.Nimesh, S., R. Kumar, and R. Chandra, Novel polyallylamine-dextran sulfate-DNA nanoplexes: Highly efficient non-viral vector for gene delivery. International Journal of Pharmaceutics, 2006. 320(1-2): p. 143-149.
13.Esfand, R. and D.A. Tomalia, Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discovery Today, 2001. 6(8): p. 427-436.
14.Kunath, K., et al., Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. Journal of Controlled Release, 2003. 89(1): p. 113-125.
15.Trubetskoy, V.S., et al., Layer-by-layer deposition of oppositely charged polyelectrolytes on the surface of condensed DNA particles. Nucleic Acids Research, 1999. 27(15): p. 3090-3095.
16.Trubetskoy, V.S., et al., Recharging cationic DNA complexes with highly charged polyanions for in vitro and in vivo gene delivery. Gene Therapy, 2003. 10(3): p. 261-271.
17.Chung, Y.C., W.Y. Hsieh, and T.H. Young, Polycation/DNA complexes coated with oligonucleotides for gene delivery. Biomaterials, 2010. 31(14): p. 4194-4203.
18.Chung, Y.C., T.Y. Cheng, and T.H. Young, The role of adenosine receptor and caveolae-mediated endocytosis in oligonucleotide-mediated gene transfer. Biomaterials, 2011. 32(19): p. 4471-80.
19.Mammoto, A. and D.E. Ingber, Cytoskeletal control of growth and cell fate switching. Current Opinion in Cell Biology, 2009. 21(6): p. 864-870.
20.D'Anselmi, F., et al., Metabolism and cell shape in cancer: A fractal analysis. International Journal of Biochemistry & Cell Biology, 2011. 43(7): p. 1052-1058.
21.Guilak, F., et al., Control of Stem Cell Fate by Physical Interactions with the Extracellular Matrix. Cell Stem Cell, 2009. 5(1): p. 17-26.
22.Maeda, M., et al., ARHGAP18, a GTPase-activating protein for RhoA, controls cell shape, spreading, and motility. Molecular Biology of the Cell, 2011. 22(20): p. 3840-3852.
23.Huang, S. and D.E. Ingber, Shape-dependent control of cell growth, differentiation, and apoptosis: Switching between attractors in cell regulatory networks. Experimental Cell Research, 2000. 261(1): p. 91-103.
24.Provenzano, P.P. and P.J. Keely, Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. Journal of Cell Science, 2011. 124(8): p. 1195-1205.
25.Garcia, M.L. and D.V. Cleveland, Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Current Opinion in Cell Biology, 2001. 13(1): p. 41-48.
26.Dahl, K.N., A.J. Ribeiro, and J. Lammerding, Nuclear shape, mechanics, and mechanotransduction. Circ Res, 2008. 102(11): p. 1307-18.
27.Ochsner, M., et al., Dimensionality Controls Cytoskeleton Assembly and Metabolism of Fibroblast Cells in Response to Rigidity and Shape. Plos One, 2010. 5(3).
28.Robbins, P.D., H. Tahara, and S.C. Ghivizzani, Viral vectors for gene therapy. Trends in Biotechnology, 1998. 16(1): p. 35-40.
29.Marshall, E., Clinical trials - Gene therapy death prompts review of adenovirus vector. Science, 1999. 286(5448): p. 2244-2245.
30.Kunisawa, J., et al., Fusogenic liposome delivers encapsulated nanoparticles for cytosolic controlled gene release. Journal of Controlled Release, 2005. 105(3): p. 344-353.
31.Chou, L.Y.T., K. Ming, and W.C.W. Chan, Strategies for the intracellular delivery of nanoparticles. Chemical Society Reviews, 2011. 40(1): p. 233-245.
32.Akinc, A., et al., Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. Journal of Gene Medicine, 2005. 7(5): p. 657-663.
33.Pack, D.W., et al., Design and development of polymers for gene delivery. Nature Reviews Drug Discovery, 2005. 4(7): p. 581-593.
34.Lee, H., et al., PEGylated polyethyleneimine grafted silica nanoparticles: enhanced cellular uptake and efficient siRNA delivery. Analytical and Bioanalytical Chemistry, 2011. 400(2): p. 535-545.
35.Grosse, S., et al., Which mechanism for nuclear import of plasmid DNA complexed with polyethylenimine derivatives? Journal of Gene Medicine, 2006. 8(7): p. 845-851.
36.Pathak, A., et al., Engineered polyallylamine nanoparticles for efficient in vitro transfection. Pharmaceutical Research, 2007. 24(8): p. 1427-1440.
37.Trentin, D., J. Hubbell, and H. Hall, Non-viral gene delivery for local and controlled DNA release. Journal of Controlled Release, 2005. 102(1): p. 263-275.
38.Brown, M.D., et al., Preliminary characterization of novel amino acid based polymeric vesicles as gene and drug delivery agents. Bioconjugate Chemistry, 2000. 11(6): p. 880-891.
39.Chen, Y.H., et al., Control of cell attachment on pH-responsive chitosan surface by precise adjustment of medium pH. Biomaterials, 2012. 33(5): p. 1336-1342.
40.Hsu, S.H., T.T. Ho, and T.C. Tseng, Nanoparticle uptake and gene transfer efficiency for MSCs on chitosan and chitosan-hyaluronan substrates. Biomaterials, 2012. 33(14): p. 3639-50.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63737-
dc.description.abstract細胞形態對於細胞具有很深遠的影響,包括:細胞的增生、分化、細胞骨架的重組和基因表現。目前對於細胞形狀的研究,多專注在改變形狀對於細胞有哪些基因表達的改變,鮮少關注改變細胞形狀與基因轉殖之間的關係。
本研究利用不同培養基材 chitosan 和 TCPS 培養細胞,可成功改變細胞形狀。確立細胞形狀改變後,使用兩種基因轉殖載體,第一種是 ExGEN500 和Plasmid DNA 混和的基因轉殖載體,第二種是在其外包覆單股核酸的基因轉殖載體。研究結果發現,兩種基因轉殖載體於 chitosan 上,細胞的轉殖效率均差於 TCPS 。因此,對細胞進行吞噬實驗,發現細胞吞噬基因轉殖載體在chitosan 和 TCPS 差異不大。但是,於共軛焦顯微鏡的觀察中,發現基因轉殖載體在 chitosan 上,較不容易進入細胞核。因此,可能是細胞降低轉殖效率的原因。
第二部分研究探討,細胞先吞噬基因轉殖載體於 TCPS上,再使用 trypsin 劇烈改變細胞骨架後,重新貼附於 TCPS 或是懸浮於 chitosan 上。發現DNA/PEI轉殖載體的轉殖效率,於短時間吞噬和短時間培養的條件下,有表現增加的趨勢,而長時間吞噬與培養則無此現象,因此推測,改變細胞形狀於吞噬後短時間內,可使基因轉殖蛋白提早表現。
總結兩部分實驗,可發現細胞形狀對於基因轉殖具有很深遠的影響,若是先改變細胞形狀,再進行基因轉殖,其轉殖效率會下降。但先進行基因轉殖,使細胞吞噬基因轉殖載體一段時間後,再改變細胞形狀,其轉殖效率並不會下降太多。顯示若是轉殖粒子進入細胞核內後,改變細胞形狀對於轉殖蛋白的表現不會影響太多。因此,轉殖載體能否進入細胞核是基因轉殖的重要關鍵。
zh_TW
dc.description.abstractCell morphology has a profound effect on a range of cellular events, such as proliferation, differentiation, cytoskeletal organization, or presumably gene expression. Currently, regarding the research of cell shapes, the majority focuses on the changes to gene expression after the shape of the cell has been changed, while only a few focus on the relationship between changing the shape of the cell and the effects it has on gene transfection.
This research uses two different materials, chitosan and TCPS, to culture the Hela cells and successfully change the cell shape. Once the cell shape is changed, two gene transfection vectors were used, the first type being a ExGEN500 and Plasmid DNA complex, and the second type being an oligonucleotide coating on the first type complex. According to the results of this research, the cells cultured on chitosan, both gene transfection vectors are less efficient than the cells cultured on TCPS. On the other hand, from the results of the cell uptake experiment, it is observed that there is no difference between the cell uptake of the complexes with chitosan and the complexes in TCPS. However, from the data of the confocal microscopy, DNA/PEI complexes do not transfect into the cell nucleus when cell culture on chitosan. This may be the reason for the lowered gene transfection efficiency.
In the second part of the research, the gene transfection vectors are first uptaken by cell on TCPS, and then, after the use of trypsin to dramatically change the skeleton of the cells, the cells are readhered to TCPS or suspended above chitosan. From this, it is observed that, under a shortly uptaking time and a shortly culturing period, the gene transfection efficiency of DNA/PEI complex is increased, while under a long uptaking time and long culturing period there is no difference in effect. From this, it can be predicted that changing the form of the cell in the shortly uptaking time period after cell uptake can cause gene transfection proteins to perform earlier.
From the two parts of the experiment, it can be seen that the structure of the cell has a large impact on gene transfection, but if the cell strcture is changed first, and then the cell is subjected to gene transfection, the efficiency of the transfection will be decreased. However, if the cell is first subjected to gene transfection, and the gene transfection complex is subjected to cell uptake for a brief period before the cell structure is changed, the efficiency of the gene transfection will not be decreased to the same extent. Also, the research shows that once the gene transfection particles enter the nucleus of the cell, with regards to the transfection protein, changing the structure of the cell will not cause a large effect on performance. Thus, whether the complexes can enter the cell or not is the key to gene transfection.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:17:42Z (GMT). No. of bitstreams: 1
ntu-101-R99548019-1.pdf: 2590705 bytes, checksum: 43d66086670807959d0b01a1376854bc (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝.....................................................i
中文摘要.................................................ii
ABSTRACT.................................................iii
目錄.....................................................v
LIST OF FIGURE...........................................ix
LIST OF TABLES...........................................xi
Chapter 1 緒論............................................1
Chapter 2 文獻回顧........................................3
2.1 細胞骨架系統....................................3
2.1.1 細胞質骨架......................................4
2.1.2 細胞核骨架......................................4
2.2 基因治療的發展..................................5
2.2.1 病毒式基因轉殖載體..............................6
2.2.2 非病毒式基因轉殖載體............................7
2.3 高分子材料於基因轉殖的應用......................9
2.3.1 常見的陽離子型載體..............................11
2.4 單股核酸包覆基因轉殖載體的應用..................13
2.5 幾丁聚醣簡介....................................15
Chapter 3 實驗材料與方法..................................16
3.1 實驗理論與架構..................................16
3.2 實驗材料........................................17
3.3 儀器............................................20
3.4 試劑配製........................................24
3.5 實驗方法........................................27
3.5.1 單股核酸包覆基因轉殖載體物性....................27
3.5.2 基因轉殖載體之毒性測試..........................27
3.5.3 不同基材對於細胞形狀變化之探討..................28
3.5.4 改變細胞形狀對基因轉殖之影響....................28
3.5.5 改變細胞形狀對細胞吞噬之影響....................29
3.5.6 基因轉殖載體與 lysosome之觀察...................30
3.5.7 吞噬轉殖載體不同時間對基因轉殖之影響............30
3.5.8 改變細胞形狀於吞噬基因轉殖載體後................31
3.5.9 細胞形狀改變對基因轉殖之影響於短時間吞噬載體後..31
Chapter 4 研究結果........................................33
4.1 單股核酸包覆基因轉殖載體粒子的物性..............33
4.2 基因轉殖載體之毒性測試..........................33
4.3 不同基材對於細胞形狀變化之探討..................33
4.3.1 細胞形狀的定義..................................34
4.3.2 細胞骨架染色....................................34
4.4 改變細胞形狀對基因轉殖之影響....................34
4.4.1 螢光顯微鏡觀察結果..............................34
4.4.2 Flow cytometry..................................35
4.4.3 Luciferase 蛋白轉殖效率.........................35
4.5 改變細胞形狀對細胞吞噬之影響....................35
4.5.1 不同時間點細胞吞噬之效率........................35
4.5.2 共軛焦顯微鏡之觀察..............................36
4.6 基因轉殖載體與 lysosome之觀察...................37
4.7 吞噬轉殖載體不同時間對基因轉殖的影響............37
4.8 改變細胞形狀於吞噬基因轉殖載體後................37
4.9 細胞形狀改變對基因轉殖之影響於短時間吞噬載體後..38
Chapter 5 討論............................................39
5.1 單股核酸包覆基因轉殖載體的物性..................39
5.2 基因轉殖載體之毒性測試..........................39
5.3 不同基材對於細胞形狀變化之探討..................40
5.4 改變細胞形狀對基因轉殖之影響....................40
5.5 改變細胞形狀對細胞吞噬之影響....................41
5.6 基因轉殖載體與 lysosome之觀察...................42
5.7 吞噬轉殖載體不同時間對基因轉殖的影響............42
5.8 改變細胞形狀於吞噬基因轉殖載體後................43
5.9 細胞形狀改變對基因轉殖之影響於短時間吞噬載體後..43
Chapter 6 結論............................................45
Chapter 7 參考文獻........................................46
附錄 圖表................................................51
dc.language.isozh-TW
dc.title探討細胞形狀對於單股核酸包覆奈米粒子的基因轉殖效率zh_TW
dc.titleInvestigating the Cell Shape on Gene Transfection Efficiency of Oligonucleotide-assembled Nanocomplexesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝銘鈞,胡威文
dc.subject.keyword細胞形態,基因轉殖,幾丁聚醣,單股核酸,聚乙烯亞胺,zh_TW
dc.subject.keywordcell morphology,gene transfection,chitosan,oligonucleotides,polyethyleneimine,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2012-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
2.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved