請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6372完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉永烜(Wing-Huen Ip),鄧屬予(Louis S. Teng) | |
| dc.contributor.author | Whyjay Zheng | en |
| dc.contributor.author | 鄭懷傑 | zh_TW |
| dc.date.accessioned | 2021-05-16T16:27:26Z | - |
| dc.date.available | 2014-03-06 | |
| dc.date.available | 2021-05-16T16:27:26Z | - |
| dc.date.copyright | 2013-03-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-01-29 | |
| dc.identifier.citation | Amelin, Y., Krot, A. N., Hutcheon, I. D., & Ulyanov, A. A. (2002). Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science, 297(5587), 1678-1683.
Arakawa, M., Kagi, H., Fernandez-Baca, J. A., Chakoumakos, B. C., & Fukazawa, H. (2011). The existence of memory effect on hydrogen ordering in ice: The effect makes ice attractive. Geophysical Research Letters, 38. Beuthe, M. (2008). Thin elastic shells with variable thickness for lithospheric flexure of one-plate planets. Geophysical Journal International, 172(2), 817-841. Brotchie, J. F., & Silvester, R. (1969). On Crustal Flexure. Journal of Geophysical Research, 74(22), 5240-5252. Buratti, B. J., Cruikshank, D. P., Brown, R. H., Clark, R. N., Bauer, J. M., Jaumann, R., McCord, T. B., Simonelli, D. P., Hibbitts, C. A., Hansen, G. B., Owen, T. C., Baines, K. H., Bellucci, G., Bibring, J.-P., Capaccioni, F., Cerroni, P., Coradini, A., Drossart, P., Formisano, V., Langevin, Y., Matson, D. L., Mennella, V., Nelson, R. M., Nicholson, P. D., Sicardy, B., Sotin, C., Roush, T. L., Soderlund, K., & Muradyan, A. (2005). Cassini Visual and Infrared Mapping Spectrometer Observations of Iapetus: Detection of CO2. The Astrophysical Journal, 622(2), L149-L152. Castillo-Rogez, J. C., Johnson, T. V., Lee, M. H., Turner, N. J., Matson, D. L., & Lunine, J. (2009). 26Al decay: Heat production and a revised age for Iapetus. Icarus, 204(2), 658-662. Castillo-Rogez, J. C., Matson, D. L., Sotin, C., Johnson, T. V., Lunine, J. I., & Thomas, P. C. (2007). Iapetus' geophysics: Rotation rate, shape, and equatorial ridge. Icarus, 190(1), 179-202. Chaplin, M. (2012). Water Phase Diagram, from http://www.lsbu.ac.uk/water/phase.html Cruikshank, D. P., Meyer, A. W., Brown, R. H., Clark, R. N., Jaumann, R., Stephan, K., Hibbitts, C. A., Sandford, S. A., Mastrapa, R. M. E., Filacchione, G., Ore, C. M. D., Nicholson, P. D., Buratti, B. J., McCord, T. B., Nelson, R. M., Dalton, J. B., Baines, K. H., & Matson, D. L. (2010). Carbon dioxide on the satellites of Saturn: Results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale. Icarus, 206(2), 561-572. Czechowski, L., & Leliwa-Kopystyński, J. (2008). The Iapetus’s ridge: Possible explanations of its origin. Advances in Space Research, 42(1), 61-69. Denk, T., Matz, K.-D., Roatsch, T., Wolf, U., Wagner, R. J., Neukum, G., & Jaumann, R. (2000). Iapetus (1): Size, Topography, Surface Structures, Craters. Paper presented at the 31st Lunar and Planetary Science Conference, Houston, Texas. Dobrovolskis, A. R., Peale, S. J., & Harris, A. W. (1997). Dynamics of the Pluto-Charon Binary. In S. A. Stern & D. J. Tholen (Eds.), Pluto and Charon (pp. 159). Tucson, AZ: Univ. of Arizona Press. Dombard, A. J., & Cheng, A. F. (2008). Constraints on the Evolution of Iapetus from Simulations of Its Ridge and Bulge. Paper presented at the 39st Lunar and Planetary Science Conference, League City, Texas. Dombard, A. J., Cheng, A. F., McKinnon, W. B., & Kay, J. P. (2012). Delayed formation of the equatorial ridge on Iapetus from a subsatellite created in a giant impact. Journal of Geophysical Research, 117(E3). Fukazawa, H., Hoshikawa, A., Ishii, Y., Chakoumakos, B. C., & Fernandez-Baca, J. A. (2006). Existence of ferroelectric ice in the universe. Astrophysical Journal, 652(1), L57-L60. Fukazawa, H., Ikeda, S., & Mae, S. (1998). Incoherent inelastic neutron scattering measurements on ice XI; the proton-ordered phase of ice I-h doped with KOH. Chemical Physics Letters, 282(2), 215-218. Giese, B., Denk, T., Neukum, G., Roatsch, T., Helfenstein, P., Thomas, P. C., Turtle, E. P., McEwen, A., & Porco, C. C. (2008). The topography of Iapetus' leading side. Icarus, 193(2), 359-371. Giese, B., Neukum, G., Roatsch, T., Denk, T., & Porco, C. C. (2006). Topographic modeling of Phoebe using Cassini images. Planetary and Space Science, 54(12), 1156-1166. Giese, B., Wagner, R., Hussmann, H., Neukum, G., Perry, J., Helfenstein, P., & Thomas, P. C. (2008). Enceladus: An estimate of heat flux and lithospheric thickness from flexurally supported topography. Geophysical Research Letters, 35(24). Gladman, B., Quinn, D. D., Nicholson, P., & Rand, R. (1996). Synchronous locking of tidally evolving satellites. Icarus, 122(1), 166-192. Ip, W. H. (2006). On a ring origin of the equatorial ridge of Iapetus. Geophysical Research Letters, 33(16). Jacobson, R. A., Antreasian, P. G., Bordi, J. J., Criddle, K. E., Ionasescu, R., Jones, J. B., Mackenzie, R. A., Meek, M. C., Parcher, D., Pelletier, F. J., Owen, W. M., Roth, D. C., Roundhill, I. M., & Stauch, J. R. (2006). The gravity field of the saturnian system from satellite observations and spacecraft tracking data. The Astronomical Journal, 132(6), 2520-2526. Jet Propulsion Laboratory. (2007). Iapetus 049IA Mission Description: California Institute of Technology. Jones, G. H., Roussos, E., Krupp, N., Beckmann, U., Coates, A. J., Crary, F., Dandouras, I., Dikarev, V., Dougherty, M. K., Garnier, P., Hansen, C. J., Hendrix, A. R., Hospodarsky, G. B., Johnson, R. E., Kempf, S., Khurana, K. K., Krimigis, S. M., Kruger, H., Kurth, W. S., Lagg, A., McAndrews, H. J., Mitchell, D. G., Paranicas, C., Postberg, F., Russell, C. T., Saur, J., Seiss, M., Spahn, F., Srama, R., Strobel, D. F., Tokar, R., Wahlund, J. E., Wilson, R. J., Woch, J., & Young, D. (2008). The dust halo of Saturn's largest icy moon, Rhea. Science, 319(5868), 1380-1384. Kerr, R. A. (2008). Saturn's rings look ancient again. Science, 319(5859), 21. Kirchoff, M. R., & Schenk, P. (2010). Impact cratering records of the mid-sized, icy saturnian satellites. Icarus, 206(2), 485-497. Kita, N. T., Huss, G. R., Tachibana, S., Amelin, Y., Nyquist, L. E., & Hutcheon, I. D. (2005). Constraints on the Origin of Chondrules and CAIs from Short-Lived and Long-Lived Radionuclides. Paper presented at the Chondrites and the Protoplanetary Disk, ASP conference Series, Kaua'i, Hawai'i. Kleinhans, M. G., Markies, H., de Vet, S. J., in 't Veld, A. C., & Postema, F. N. (2011). Static and dynamic angles of repose in loose granular materials under reduced gravity. Journal of Geophysical Research, 116(E11). Leliwa-Kopystyhski, J., Makkonen, L., Erikoinen, O., & Kossacki, K. J. (1994). Kinetics of pressure-induced effects in water ice/rock granular mixtures and application to the physics of the icy satellites. Planetary and Space Science, 42(7), 545-555. Levison, H. F., Walsh, K. J., Barr, A. C., & Dones, L. (2011). Ridge formation and de-spinning of Iapetus via an impact-generated satellite. Icarus, 214(2), 773-778. Marchi, S., Barbieri, C., Dell'Oro, A., & Paolicchi, P. (2002). Hyperion-Iapetus: Collisional relationships. Astronomy and Astrophysics, 381(3), 1059-1065. Matson, D. L., Castillo-Rogez, J. C., Schubert, G., Sotin, C., & McKinnon, W. B. (2009). The Thermal Evolution and Internal Structure of Saturn's Mid-Sized Icy Satellites. In M. Dougherty, L. Esposito & S. Krimigis (Eds.), Saturn from Cassini-Huygens (pp. 577-612): Springer. Melosh, H. J. (1996). Impact Cratering: A Geologic Process (Reprinted ed.). USA: Oxford University Press. Melosh, H. J., & Nimmo, F. (2009). An intrusive dike origin for Iapetus' enigmatic ridge? Paper presented at the 40th Lunar and Planetary Science Conference, Woodlands, Texas. Munsell, K. (2012). Cassini Solstice Mission, from http://saturn.jpl.nasa.gov/index.cfm Neukum, G., Wagner, R., Denk, T., Porco, C. C., & Cassini ISS Team. (2005). The cratering record of the saturnian satellites Phoebe, Tethys, Dione and Iapetus in comparison: First results from analysis of the Cassini ISS imaging data. Paper presented at the 36th Lunar and Planetary Science Conference. Owen, T., Cruikshank, D. P., Dalle Ore, C. M., Geballe, T. R., Roush, T. L., de Bergh, C., Meier, R., Pendleton, Y. J., & Khare, B. N. (2001). Decoding the Domino: The Dark Side of Iapetus. Icarus, 149(1), 160-172. Peale, S. J. (1977). Rotation histories of the natural satellites. In J. Burns (Ed.), Planetary Satellites (pp. 87-112). Tucson, AZ: Univ. of Arizona Press. Peale, S. J. (1986). Orbital resonances, unusual configurations, and exotic rota-tion states among the planetary satellites. In J. A. Burns & M. S. Matthews (Eds.), Satellites (pp. 159-224). Tucson, AZ: Univ. of Arizona Press. Porco, C. C., Baker, E., Barbara, J., Beurle, K., Brahic, A., Burns, J. A., Charnoz, S., Cooper, N., Dawson, D. D., Del Genio, A. D., Denk, T., Dones, L., Dyudina, U., Evans, M. W., Giese, B., Grazier, K., Helfenstein, P., Ingersoll, A. P., Jacobson, R. A., Johnson, T. V., McEwen, A., Murray, C. D., Neukum, G., Owen, W. M., Perry, J., Roatsch, T., Spitale, J., Squyres, S., Thomas, P. C., Tiscareno, M., Turtle, E., Vasavada, A. R., Veverka, J., Wagner, R., & West, R. (2005). Cassini Imaging Science: initial results on Phoebe and Iapetus. Science, 307(5713), 1237-1242. Roatsch, T., Jaumann, R., Stephan, K., & Thomas, P. C. (2009). Cartographic Mapping of the Icy Satellites Using ISS and VIMS Data. Saturn from Cassini-Huygens (pp. 763-781). Netherlands: Springer. Sandwell, D., & Schubert, G. (2010). A contraction model for the flattening and equatorial ridge of Iapetus. Icarus, 210(2), 817-822. Schenk, P., Hamilton, D. P., Johnson, R. E., McKinnon, W. B., Paranicas, C., Schmidt, J., & Showalter, M. R. (2011). Plasma, plumes and rings: Saturn system dynamics as recorded in global color patterns on its midsize icy satellites. Icarus, 211(1), 740-757. Schulson, E. M. (2001). Brittle failure of ice. Engineering Fracture Mechanics, 68, 1839-1887. Singer, K. N., & McKinnon, W. B. (2011). Tectonics on Iapetus: Despinning, respinning, or something completely different? Icarus, 216(1), 198-211. Spencer, J. R., & Denk, T. (2010). Formation of Iapetus' extreme albedo dichotomy by exogenically triggered thermal ice migration. Science, 327(5964), 432-435. Squyres, S. W., & Sagan, C. (1983). Albedo asymmetry of Iapetus. Nature, 303, 782-785. Thomas, P. C. (2010). Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission. Icarus, 208(1), 395-401. Thomas, P. C., Burns, J., Helfenstein, P., Squyres, S., Veverka, J., Porco, C., Turtle, E., McEwen, A., Denk, T., & Giese, B. (2007). Shapes of the saturnian icy satellites and their significance. Icarus, 190(2), 573-584. Turcotte, D. L., & Schubert, G. (2002). Elsticity and Flexure. Geodynamics (2 ed., pp. 105-131). UK: Cambridge University Press. USGS Astrogeology. (2009). Gazetteer of Planetary Nomenclature, from http://planetarynames.wr.usgs.gov/ van Helden, A. (1984). Saturn through the telescope - A brief historical survey. Saturn (pp. 23-43). Tucson, AZ: University of Arizona Press. Verbiscer, A. J., Skrutskie, M. F., & Hamilton, D. P. (2009). Saturn's largest ring. Nature, 461(7267), 1098-1100. Walcott, R. I. (1970). Flexural Rigidity, Thickness, and Viscosity of Lithosphere. Journal of Geophysical Research, 75(20), 3941-&. Watts, A. B. (2001). Theory of Elastic Plates. Isostasy and Flexure of the Lithosphere (pp. 87-112). UK: Cambridge University Press. Watts, A. B., Karner, G. D., & Steckler, M. S. (1982). Lithospheric Flexure and the Evolution of Sedimentary Basins. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 305(1489), 249-281. Wickert, A. D. (2012). Lithospheric Flexure and Earth-Surface Processes: 1. Rapid Solutions with Nonuniform Elastic Thickness. Willians, D. R. (2012). Planetary Fact Sheet, from http://nssdc.gsfc.nasa.gov/planetary/factsheet/ Wilson, P. D., & Sagan, C. (1996). Spectrophotometry and Organic Matter on Iapetus: 2. Models of Interhemispheric Asymmetry. Icarus, 122(1), 92-106. Yeomans, D. K. (2012). Planetary Satellite Physical Parameters, from http://ssd.jpl.nasa.gov/?sat_phys_par Zebker, H. A., Marouf, E. A., & Tyler, L. (1985). Saturn's ring: Particle size distributions for thin layer models. Icarus, 64(3), 531-548. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6372 | - |
| dc.description.abstract | 土衛八伊阿珀托斯可能是太陽系中最具特異性之一顆衛星。在平均半徑約為735公里的星球上,有一列平均高度約10公里的山脊精準地落在其赤道上,這高聳的山脊甚至讓伊阿珀托斯的外型看起來像核桃般特異。此列山脊大概佔據了伊阿珀托斯超過75%的赤道總長,吾人即據此事實名之「赤道脊」。赤道脊在2005被卡西尼號探測器發現,但它的形成原理卻因缺少進一步的觀測證據,至今還在爭辯中;目前已經有數種不同的形成假說,並可以粗略地被分為內生性成因(板塊運動)或是外生性成因(環遺骸堆積物)。
另外,伊阿珀托斯的外型呈現扁橢球形,並可對應至一個自轉週期為16小時的液體球平衡外型。但伊阿珀托斯目前已受土星之潮汐鎖定,導致其自轉週期為79天。由於此衛星具有古老且隕石坑眾多的表面,潮汐鎖定事件和赤道脊形成的事件應也在衛星形成的早期(> 4000 Ma)即完成。如此一來,在赤道脊形成之時,伊阿珀托斯之表面應具有相當高之熱流值,使得地表易受到負重或板塊作用力的影響而彎曲。因此,只要利用此點,就可算出在赤道脊形成時,伊阿珀托斯表面之材料特性,再利用這些限制求出較可能之赤道脊起源。 本研究主要目的,即是利用彈性岩石圈理論,運用解析法及數值法,建構伊阿珀托斯赤道脊之折彎模型(Flexure Model)。赤道脊在此方法中被視為在伊阿珀托斯的硬外殼(彈性板)上完美之線狀負載,伊阿珀托斯的數值高程模型(DTM)不僅被作為建構赤道脊負載的量化依據,同時也顯露出赤道脊山腳有數公里深之凹陷證據。如此深的凹陷意味著彈性板厚度可能極小,如此一來伊阿珀托斯的硬外殼可以被視為平坦的單一薄板。另外從地質特徵觀之,伊阿珀托斯並無板塊作用(側向應力的存在)的證據。在解析式模型中,赤道脊被設定為一負載點,以上條件可令折彎與負載的關係簡化成一維線性常微分方程,輸入彈性板的厚度後,就可求得被折彎之地表的情形。而在一維數值模型中,負載之函數則依赤道脊的外貌剖面建立,並使用有限差分法模擬折彎之地表。另外,因為隕石撞擊事件可能影響彈性板厚度,本研究也嘗試使用彈性板厚度隨位置變化之數值模型做為參考。 模擬結果顯示了與前人研究一致之訊息:超過100公里厚之彈性岩石圈將不會造成任何顯著的地表折彎。然而DTM高程提供的訊息(尤其是隆起處與赤道脊中心之距離)卻顯示其較有可能為5-10公里厚之彈性岩石圈作用下的結果。數值模擬結果也顯示了赤道脊區域的地型主要由隕石撞擊事件,以及薄彈性層折彎這兩因子所塑造。此一新結果雖與前人研究相異,但除了一部份疑似受隕石撞擊事件施以彈性層水平應力之區域外,對於DTM地形卻高度相符。如此薄的岩石圈,也說明了赤道脊形成時,伊阿破托斯內部具有高熱流通量(~18 mWm-2)。如此一來16小時週期之橢球外貌的形成,時間上應晚於赤道脊之形成。折彎模型中也顯示了赤道脊的原始高度可能較現今高出一倍,如此一來原始坡度就與環殘骸堆疊(外生性成因)後自然形成的堆積坡休止角較為相近而不矛盾。綜觀以上結果,由於並無明顯的證據支持內生性成因,因此較有可能之赤道脊起源仍屬外生性之環殘骸假說。 簡而言之,從地表地型資料與衛星熱史推論,伊阿珀托斯的彈性折彎模型顯示了赤道脊可能負載於一較薄(5-10公里)之彈性板上,並且提供了更多關於伊阿珀托斯,這顆太陽系中有趣的衛星,其起源的更多線索。 | zh_TW |
| dc.description.abstract | Iapetus may be the most peculiar satellite in the Solar System. This Saturnian moon has a mean radius of 735 km, but an averagely 10-kilometer-high mountain ridge lies precisely on its 75% equatorial circumference. The ridge is so high that Iapetus appears walnut shaped, and it is named “equatorial ridge” after this amazing truth. The ridge was discovered by the Cassini spacecraft in 2005, but the formation theory is still under debate because of the lack of observational data. Several hypotheses, which are roughly divided into endogenic (tectonic buckling) and exogenic (ring remnant) processes, are attributed to explain its origin.
Previous studies also noted that the shape of Iapetus is an oblate spheroid related to a hydrostatic spin period of 16 h, but Iapetus now is tidally synchronized with a 79-day period. Because the surface of Iapetus is old and heavily cratered, the formation of the ridge and the oblate spheroid had finished in the early stage of Iapetus (> 4000 Ma). Thus, it’s plausible to assume that Iapetus had a high thermal flux when the equatorial ridge formed. The assumption leads to a result that the surface would bend when the applying load like the ridge exerted. Therefore, upon calculating the deflection of the surface, we could obtain some constraints for the thermal history of Iapetus, and the proper origin model of the equatorial ridge. According to this idea, we attempted to construct analytical and numerical flexural models of the equatorial ridge by utilizing elastic lithosphere theory. The equatorial ridge is treated as a perfectly linear load on Iapetus’ hard shell (i.e. elastic layer of Iapetus). The Digital Terrain Model (DTM) data are inputted and transformed to a vertical load function, and also reveals that large deflection exists in some foothills area. This few-kilometre deflection implies a very thin elastic layer enough to regard it as a flat plate. Moreover, there are no tectonic signals on Iapetus, so the flat-Earth and one-plate condition could adapt to the flexure model. To obtain an analytical solution, the equatorial ridge is simplified to a central loading point. This can be rearranged into an explicit deflecting function in the 1-D coordinate system, so the deflection can be computed if the elastic thickness is given. In the numerical model, the point vertical force is replaced by a loading map. The finite difference method is used to solve the ODE flexural function. Consider the elastic thickness may vary with different areas; we also set a variable-thickness program for the numerical modelling. The modelling results illustrate that an over 100-km elastic layer would not cause any significant deflection; it coincides with the previous suggested. However, a deflecting curve with a range of 5-10 km elastic thickness well fits the terrain data, especially for the distance between a bulge and the ridge. Numerical solution also shows that there are 2 factors contributing the geomorphological changes: cratering and the flexure. Cratering created a deep hole and a thinner elastic layer. These new results seem controversial to the previous studies, but the modelled surface profile is highly consistent with numerical ridge DTM profile except the plateau regions which are suspected to be caused by cratering end load pressure. Such a thin shell implies that the ridge formed when the heat flux stayed high (~18 mWm-2). Therefore, the formation of the ridge probably happened before the despin (oblate shaping) event. The thin-layer flexure model also solves the problem of the angle of response because the ridge sank in the deflected surface, lowered the slope from the angle of response to the observed slope of the ridge. Since there is no evidence relating to endogenic processes, the exogenic origin is in favour. In conclusion, the flexural model of Iapetus’ equatorial ridge reveals the possibility of thinner (5-10 km) hard shell, fits the surface profile and thermal history, and supplies more clues to the origin of Iapetus, the interesting satellite in the Solar System. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-16T16:27:26Z (GMT). No. of bitstreams: 1 ntu-102-R99224106-1.pdf: 4086690 bytes, checksum: e993bc43aa7136e42264532bf66938f9 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員審定書 i
Acknowledgement i 摘要 i Abstract iii Table of Contents v List of Figures vii List of Tables ix Chapter 1 Introduction 1 1.1 Saturn 1 1.1.1 The Ring System of Saturn 2 1.1.2 The Satellite System of Saturn 4 1.2 Iapetus 4 1.2.1 Observational History 5 1.2.2 Basic Physical Properties 7 1.2.3 Surface Features 9 1.3 Research Goals 10 Chapter 2 Historical Researches 12 2.1 Geological Background of Iapetus 12 2.1.1 Shape and Rotation 12 2.1.2 Age 14 2.1.3 Inner Structure and Composition 15 2.1.4 Thermal History 16 2.1.5 Albedo Dichotomy 17 2.2 Geomorphological Data of Iapetus’ Equatorial Ridge 19 2.3 The Origin Models and Flexural Implications of Iapetus’ Equatorial Ridge 21 2.3.1 Exogenic Models 23 2.3.2 Endogenic Models 25 Chapter 3 Research Methods 28 3.1 Introduction to the Flexure Model 28 3.2 Construction of the Flexure Model 29 3.2.1 Fundamental Formulae of the Flexure Model 30 3.2.2 2-D Flexure Equations of Elastic Plates 31 3.3 Analytical Flexure Model of the Equatorial Ridge 38 3.3.1 Material Properties of Iapetus 38 3.3.2 Basic Assumptions and Approximate Equations for the Ridge 41 3.3.3 Modeling Flow Chart 44 3.4 Numerical Flexure Model of the Equatorial Ridge 46 3.4.1 Differences between Analytic and Numerical 46 3.4.2 Modeling Flow Chart 47 3.5 Features against the previous studies of Iapetus’ flexure model 49 Chapter 4 Research Results 50 4.1 Analytical Solution 50 4.1.1 Geomorphological Constraints of Elastic Thickness 56 4.2 Numerical Solution 57 4.2.1 Uniform Thickness 57 4.2.2 Variable Thickness 61 Chapter 5 Discussion and Conclusion 63 5.1 Interpretation of the Results 63 5.1.1 Ridge Area 63 5.1.2 Ultrahigh Bulge 63 5.1.3 Craters 64 5.2 Formation Model of the Equatorial Ridge 65 5.2.1 Possibility of a Thin Elastic Shell 65 5.2.2 Endogenic or Exogenic? 66 5.3 Chronology of Iapetus 67 5.4 Conclusion 68 Chapter 6 References 69 | |
| dc.language.iso | en | |
| dc.title | 土衛八伊阿珀托斯赤道脊之彈性折彎模型模擬 | zh_TW |
| dc.title | Elastic Flexure Model of Iapetus’ Equatorial Ridge | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪淑蕙,趙丰,林殿順 | |
| dc.subject.keyword | 伊阿珀托斯,彈性折彎模型,赤道脊,岩石圈,數值模擬, | zh_TW |
| dc.subject.keyword | Iapetus,Flexure model,Equatorial Ridge,Lithosphere,Numerical Model, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-01-29 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf | 3.99 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
