Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63726
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙鍵哲
dc.contributor.authorTzu-Yi Chuangen
dc.contributor.author莊子毅zh_TW
dc.date.accessioned2021-06-16T17:17:24Z-
dc.date.available2012-09-17
dc.date.copyright2012-08-22
dc.date.issued2012
dc.date.submitted2012-08-18
dc.identifier.citationAckermann, F., 1984. Digital Image Correlation: Performance and Potential Application in Photogrammetry. Photogrammetric Record, 11(64):429-439.
Ackermann, F., 1999. Airborne Laser Scanning ‐ Present Status and Future Expectations. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2‐3): 64-67.
Akca, D., 2003. Fully Automatic Registration of Laser Scanner Point Clouds. In: Optical 3-D Measurement Techniques VI, volume 1, Zurich, Switzerland, pp. 330-337.
Akca, D., 2007. Least Squares 3-D Surface Matching. Ph.D. Dissertation, Swiss Federal Institute of Technology Zurich, 92p.
Al-Manasir, K. and Fraser, C.S., 2006. Registration of Terrestrial Laser Scanner Data Using Imagery. Photogrammetric Record, 21(115): 255-268.
Ankerst, M., Kastenmuller, G., Kriegel, H.P. and Seidl, T., 1999. 3-D Shape Histograms for Similarity Search and Classification in Spatial Databases. International Symposium on Advances in Spatial Database, pp. 207-226.
Arun, K.S., Huang, T.S. and Blostein, S.D., 1987. Least Square Fitting of Two 3-D Point Sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(5): 698-700.
Awange, J.L. and Grafarend, E., 2003. Explicit Solution of the Overdetermined Three-Dimensional Resection Problem. Journal of Geodesy, 76: 605-616.
Ayache, N. and Faugeras, O., 1989. Maintaining Representations of the Environment of a Mobile Robot. IEEE Trans. Robotics Automation, 5(6): 804-819.
Bae, K. and Lichti, D., 2004. Automated Registration of Unorganised Point Clouds from Terrestrial Laser Scanners. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(Part B5), pp. 222-227.
Bae, K. and Lichti, D., 2008. A Method for Automated Registration of Unorganised Point Clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 63(1): 35-54.
Baltsavias, E.P., 1999a. Airborne Laser Scanning: Basic Relations and Formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2‐3): 199‐214.
Baltsavias, E.P., 1999b. Airborne Laser scanning: Existing Systems and Firms and Other Resources. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2‐3): 164‐198.
Barazzetti, L., 2011. Automatic Tie Point Extraction from Markerless Image Blocks in Close-Range Photogrammetry. Ph.D. Dissertation, Geomatics and Infrastructures XXIII Cycle, Politecnico Di Milano, 155p.
Barber, D., Mills, J. and Smith-Voysey, S., 2008. Geometric Validation of a Ground-Based Mobile Laser Scanning System. ISPRS Journal of Photogrammetry and Remote Sensing, 63 (1): 128-141.
Barnea, S. and Filin, S., 2008. Keypoint Based Autonomous Registration of Terrestrial Laser Point-Clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 63(1): 19-35.
Barnea, S. and Filin, S., 2010. Geometry-Image-Intensity Combined Features for Registration of Terrestrial Laser Scans. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(3A), pp. 145-149.
Bay, H., Ess, A., Tuytelaars, T. and van Gool, L., 2008. Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding, 110(3): 346-359.
Beer, F.P. and Johnston, E.R., 1977. Vector Mechanics for Engineers: Dynamics. McGraw-Hill International, 957p.
Belongie, S., Malik, J. and Puzicha, J., 2001. Matching Shapes. International Conference on Computer Vision, 1, pp. 454-461.
Bendels, G.H., Degener, P., Wahl, R., Kortgen, M. and Klein, R., 2004. Image-based Registration of 3-D Range Data Using Feature Surface Elements. The 5th International Symposium on Virtual reality, Archeology and Cultural Heritage, The Eurographics Association, Belgium, December 7-10, pp. 115-124.
Bergevin, R., Soucy, M., Gagon, H. and Laurendeau, D., 1996. Towards a General Multi-view Registration Technique. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2): 540-547.
Besl, P.J. and McKay, N.D., 1992. A Method for Registration of 3-D Shape. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2): 239-256.
Biosca, J.M. and Lerma, J.L., 2008. Unsupervised Robust Planar Segmentation of Terrestrial Laser Scanner Point Clouds Based on Fuzzy Clustering Methods. ISPRS Journal of Photogrammetry and Remote Sensing, 63(1): 84‐98.
Bohm, J. and Becker, S., 2007. Automatic Marker-free Registration of Terrestrial Laser Scans Using Reflectance Features. In: Proceedings of 8th Conference on Optical 3-D measurement Techniques, Zurich, Switzerland, pp. 338-344.
Bolles, R.C. and Fischler, M.A., 1981. A RANSAC-based Approach to Model Fitting and its Application to Finding Cylinders in Range Data. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, pp. 637-643.
Borrmann, D., Elseberg, J., Lingemann, K. and Nuchter, A., 2011. The 3-D Hough Transform for Plane Detection in Point Clouds: a Review and a New Accumulator Design. Journal of 3-D Research, 2(2): 1-13.
Brenner, C., 2005. Building Reconstruction from Images and Laser Scanning. International Journal of Applied Earth Observation and Geoinformation, 6(3‐4): 187‐198.
Brenner, C. and Dold, C., 2007. Automatic Relative Orientation of Terrestrial Laser Scans Using Planar Structures and Angle Constraints. ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, Finland, pp. 84-89.
Brenner, C., Dold, C. and Ripperda, N., 2008. Coarse Orientation of Terrestrial Laser Scans in Urban Environments. ISPRS Journal of Photogrammetry & Remote Sensing, Theme Issue: Terrestrial Laser Scanning (63): 4-18.
Brunnstrom, K. and Stoddart A.J., 1996. Genetic Algorithms for Free-form Surface Matching. In: Proceedings of the 13th International Conference on Pattern Recognition, 4, pp. 689-693.
Bucksch, A., Lindenbergh, R. and Menenti, M., 2009. SkelTre‐Fast Skeletonisation for Imperfect Point Cloud Data of Botanic Trees. Eurographics Workshop on 3D Object Retrieval. Eurographics, Munchen, Germany, pp. 13-20.
Burman, H., 2002. Laser Strip Adjustment for Data Calibration and Verification. In: Symposium of ISPRS, Graz, Austria, pp. 67-72.
Canny, J., 1986. A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6): 679-698.
Caspary, W.F., 1987. Concepts of Network and Deformation Analysis. School of Surveying and Spatial Information Systems, University of New South Wales, Sydney, 183p.
Chaperon, T. and Goulette, F., 2001. Extracting Cylinders in Full 3-D Data Using a Random Sampling Method and the Gaussian Image. Vision, Modeling and Visualization, Stuttgart, Germany, pp. 35-42.
Chen, Y. and Medioni, G., 1992. Object Modelling by Registration of Multiple Range Images, Image and Vision Computing, 10(3): 145-155.
Chen, D.Y., Ouhyoung, M., Tian, X.P. and Shen, Y.T., 2003. On Visual Similarity Based 3-D Model Retrieval, Computer Graphics Forum, pp. 223-232.
Chen, L.C., Teo, T.A., Hsieh, C.H. and Rau, J.Y., 2006. Reconstruction of Building Models with Curvilinear Boundaries from Laser Scanner and Aerial Imagery. Lecture Notes in Computer Science, 4319, pp.24‐33.
Chen, Q., 2007. Airborne LiDAR Data Processing and Information Extraction. Photogrammetric Engineering and Remote Sensing, 73(2): 109‐112.
Chen, L., Teo, T., Kuo, C. and Rau, J., 2008. Shaping Polyhedral Buildings by the Fusion of Vector Maps and LiDAR Point Clouds. Photogrammetric Engineering and Remote Sensing, 74(5): 1147-1157.
Chow, C.K., Tsui, H.T. and Lee, T., 2004. Surface Registration Using a Dynamic Genetic Algorithm. Journal of the Pattern Recognition Society, 37(1): 105-117.
Chow, J.C., Lichti, D.D. and Teskey, W.F., 2010. Self-calibration of the Trimble (Mensi) GS200 Terrestrial Laser Scanner. Symposium of International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(Part 5), pp. 161-166.
Chua, C. and Jarvis, R., 1996. Point Signatures: A New Representation for 3-D Object Recognition. International Journal of Computer Vision 25(1): 63-85.
Dold, C. and Brenner, C., 2006. Registration of Terrestrial Laser Scanning Data Using Planar Patches and Image Data. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36, pp. 78-83.
Dold, C. and Brenner, C., 2008, Analysis of Score Functions for the Automatic Registration of Terrestrial Laser Scans. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, pp. 417- 422.
Dorninger, P. and Pfeifer, N., 2008. A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds. Sensors, 8(11): 7323‐7343.
Duda, R.O. and Hart, P.E., 1972. Use of the Hough Transformation to Detect Lines and Curves in Pictures. Communications of the ACM 15 (1): 11-15.
Eggert, D.W., Fitzgibbon, A.W., Fisher, R.B., 1998. Simultaneous Registration of Multiple Range Views for Use in Reverse Engineering of CAD Models. Computer Vision and Image Understanding, 69(3): 253-272.
Eo, Y.D., Pyeon, M.W., Kim, S.W., Kim, J.R., and Han, D.Y., 2012. Coregistration of Terrestrial LiDAR Points by Adaptive Scale-invariant Feature Transformation with Constrained Geometry. Automation in Construction, 25: 49-58.
Feldmar, J., Declerck, J., Malandain, G. and Ayache, N, 1997. Extension of the ICP Algorithm to Nonrigid Intensity-based Registration of 3D Volumes. Computer Vision and Image Understanding, 66(2): 193-206.
Filin, S. and Vosselman, G., 2004. Adjustment of Airborne Laser Altimetry Strips. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(B3), pp. 285-289.
Fischler, M.A. and Bolles, R.C., 1981. Random Sample Consensus: a Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM, 24(6): 381-395.
Franaszek, M., Cheok, G.S. and Witzgall, C., 2009. Fast Automatic Registration of Range Images from 3-D Imaging Systems Using Sphere Targets. Automation in Construction 18(3): 265–274.
Frohlich, C., Mettenleiter, M., 2004. Terrestrial Laser Scanning – New Perspectives in 3-D Surveying. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(Part 8/W2), pp. 7-13.
Fruh, C. and Zakhor, A., 2003. Constructing 3-D City Models by Merging Aerial and Ground Views. IEEE Computer Graphics and Applications, 23(6): 52-61.
Fujii, K. and Arikawa, T., 2002. Urban Object Reconstruction Using Airborne Laser Elevation Image and Aerial Image. IEEE Transactions on Geoscience and Remote Sensing, 40(10): 2234‐2240.
Fusiello, A., Castellani, U., Ronchetti, L. and Murino, V., 2002. Model Acquisition by Registration of Multiple Acoustic Range View. In: Proceeding of the European Conference on Computer Vision, pp. 805-822.
Gal, R. and Cohen-or, D., 2006. Salient Geometric Features for Partial Shape Matching and Similarity. Journal of ACM Transaction on Graphics, 25(1): 130-150.
Gelfand, N., Mitra, N.J., Guibas, L.J. and Pottmann, H., 2005. Robust Global Registration. Eurographics Symposium on Geometry Processing, pp. 197-206.
Gokalp, E., Gungor, O. and Boz, Y., 2008. Evaluation of Different Outlier Detection Methods for GPS Networks, Sensors, 8: 7344-7358.
Golub, G.H. and Reinsch, C., 1970. Singular Value Decomposition and Least Squares Solutions. Numerische Mathematik, 14(15): 403-420.
Golub, G. and Van Loan, C., 1996. Matrix Computations. The Johns Hopkins University Press, Baltimore, Maryland, 694 p.
Gontran, H., Skaloud, J., and Gillieron, P.-Y., 2007. A Mobile Mapping System for Road Data Capture via a Single Camera. In: Tao, C.V. and Li, J. (Editors): Advances in Mobile Mapping Technology, ISPRS Book Series, 4, Taylor & Francis, London, pp. 43-49.
Gonzalez-Aguilera, D., Rodriguez-Gonzalvez, P. and Gomez-Lahoz, J., 2009. An Automatic Procedure for Co-Registration of Terrestrial Laser Scanners and Digital Cameras. ISPRS Journal of Photogrammetry and Remote Sensing, 64(3): 308-316.
Gorte, B. and Pfeifer, N., 2004. Structuring Laser‐Scanned Trees Using 3D Mathematical Morphology. International Archives of Photogrammetry and Remote Sensing, 35(B5), pp. 929-933.
Grejner-Bzezinska, D., 2002. Direct Georeferencing at The Ohio State University: A Historical Perspective. Photogrammetric Engineering and Remote Sensing, 68(6): 557-560.
Gruen, A. and Akca, D., 2005. Least Squares 3-D Surface and Curve Matching. ISPRS Journal of Photogrammetry and Remote Sensing, 59(3): 151-174.
Habib, A., Ghanma, M. and Mitishita, E., 2004. Co-registration of Photogrammetric and LiDAR Data: Methodology and Case Study. Brazilian Journal of Cartography, 56(1): 1-13.
Habib, A., Ghanma, M., Morgon, M. and Al-Ruzouq, R., 2005. Photogrammetric and LiDAR Data Registration Using Linear Features. Photogrammetric Engineering and Remote Sensing, 71(6): 699-707.
Han, J.Y., 2010. A Non-Iterative Approach for the Quick Alignment of Multi-Station Unregistered LiDAR Point Clouds. IEEE Geoscience and Remote Sensing Letters, 7(4): 727-730.
Han, J.Y. and Jaw, J.J., 2011. Solving a Similarity Transformation Between Two Reference Frames Using Hybrid Geometric Control Features. Journal of the Chinese Institute of Engineers, accepted 15 Sep 2011.
Heczko, M., Keim, D., Saupe, D. and Vranic, D., 2002. Methods for Similarity Search on 3-D Databases. Datenbank-Spektrum, 2(2): 54-63.
Horn, B.K.P., 1987. Closed-form Solution of Absolute Orientation Using Unit Quaternions. Journal of the Optical Society of America A, 4(4): 629-642.
Horn, B.K.P., Hilden, H.M. and Negahdaripour, S., 1988. Closed-form Solution of Absolute Orientation Using Orthonormal Matrices. Journal of the Optical Society of America A, 5(7): 1127-1135.
Hough, P.V.C., 1962. Methods and Means for Recognizing Complex Patterns. U.S. patent No.3069654.
Huber, D., Carmichael, O. and Hebert, M., 2000. 3D Map Reconstruction from Range Data. In: Proceedings of IEEE International Conference on Recent Advances, pp. 891-897.
Huber D., 2002. Automatic Three-Dimensional Modeling from Reality. Ph.D. Dissertation, Carnegie Mellon University, 201p.
Huber, D. and Hebert, M., 2003. Fully Automatic Registration of Multiple 3D Data Sets. Image Vision Computation, 21(7): 637-650.
Huang, J. and Menq, C.H., 2001. Automatic Data Segmentation for Geometric Feature Extraction from Unorganized 3-D Coordinate Points. IEEE Transactions on Robotics and Automation, 17(3): 268-278.
Hu, Z.C. and Uchimura, K., 2006. Fusion of Vision, GPS and 3-D Gyro Data in Solving Camera Registration Problem for Direct Visual Navigation. International Journal of ITS Research, 4(1): 3-12.
Jaw, J.J. and Chuang, T.Y., 2008. Registration of LiDAR Point Clouds by means of 3-D Line Features. Journal of the Chinese Institute of Engineers, 31(6): 1031-1045.
Jaw, J.J. and Chuang, T.Y., 2010. On the Effectiveness of Feature-Based LiDAR Point Cloud Registration. In: Symposium of Photogrammetric Computer Vision and Image Analysis, ISPRS Comm. III, 38(3B), pp. 60-65.
Johnson, A. and Kang, S.B., 1997. Registration and Integration of Textured 3-D Data. International Conference on Recent Advances in 3-D Digital Imaging and Modeling, pp. 234-241.
Johansson, M., 2002. Explorations into the Behaviour of Three Different High-Resolution Ground-based Laser Scanners in the Built Environment. CIPA - ISPRS Workshop: Scanning for Cultural Heritage Recording, pp. 33-38.
Kang, Z., 2008. Automatic Registration of Terrestrial Point Cloud Using Panoramic Reflectance Images. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(Part B/5), Beijing, China, July 3-11, pp. 431-436.
Kang, Z., Li, J., Zhang, L., Zhao, Q. and Zlatanova, S., 2009. Automatic Registration of Terrestrial Laser Scanning Point Clouds Using Panoramic Reflectance Images. Sensors, 9(4): 2621-2646.
Khoshelham, K., Li, Z. and King, B., 2005. A Split‐and‐Merge Technique for Automated Reconstruction of Roof Planes. Photogrammetric Engineering and Remote Sensing, 71(7): 855‐862.
Kim, C., Lee, J., Cho, M. and Kim, C., 2011. Fully Automated Registration of 3-D CAD Models with Point Cloud from Construction Sites. In: Proceedings of the International Symposium on Automation and Robotics in Construction, 2, pp. 311-316.
Knight, N. L. and Wang, J., 2009. A Comparison of Outlier Detection Procedures and Robust Estimation Methods in GPS Positioning. Journal of Navigation, 62: 699-709.
Krarup, T, Kubik, K. and Juhl, J., 1980. Gotterdammerung over Least Squares. In: Proceedings of International Society for Photogrammetry 14th Congress. Hamburg, pp 370-378.
Kurdi, F.T., Landes, T. and Grussenmeyer, P., 2007. Hough-Transform and Extended RANSAC Algorithms for Automatic Detection of 3-D Building Roof Planes from LiDAR Data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(3/W52), pp. 407-412.
Kverh, B. and Leonardis, A., 1999. Registration of Range Images Based on Segmented Data. Proc. 8th Int. Conf. on Computer Analysis of Images and Patterns, Ljubljana, Slovenia, 1-3 September, pp. 347-356.
Lai, C.K., 2004. Accuracy Analysis and Calibration of Ground-based Laser Scanners. Master Thesis (in Chinese), Department of Geomatics, National Cheng-Kung University, Tainan, Taiwan, 101p.
Lemmens, M., 2010. Terrestrial Laser Scanners. GIM International, available on URL: http://www.gim-international.com/productsurvey/id41-Terrestrial_Laser_Scanners,_August.html (30/05/2012).
Lemmens, M., 2011. Airborne LiDAR Scanner. Product sSurveys of GIM International, available on URL: http://www.gim-international.com/productsurvey/id44-
Airborne_Lidar_Scanners,_February.html (30/08/2011).
Lindenberger, J., 1989. Test Results of Laser Profiling for Topographic Terrain Survey. In: Proceedings 42nd Photogrammetric Week, Stuttgart, pp. 25-39.
Li, X. and Guskov, I., 2005. Multi-scale Features for Approximate Alignment of Point-based Surfaces. Symposium on Geometry Processing, pp. 217-226.
Lowe, D.G., 2004. Distinctive Image Features from Scale-invariant Keypoints. International Journal of Computer Vision, 60(2): 91-110.
Makadia, A., Patterson IV, A. and Daniilidis, K., 2006. Fully Automatic Registration of 3D Point Clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1297-1304.
Mallet, C. and Bretar, F., 2009. Full-waveform Topographic LiDAR: State-of-the-art. ISPRS Journal of Photogrammetry and Remote Sensing, 64 (1): 1-16.
Mallet, C., Soergel, U. and Bretar, F., 2008. Analysis of Full-waveform LiDAR Data for an Accurate Classification of Urban Areas. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(Part 3A), pp. 85-92.
McIntosh, K. and Krupnik, A., 2002. Integration of Laser‐derived DSMs and Matched Image Edges for Generating an Accurate Surface Model. ISPRS Journal of Photogrammetry and Remote Sensing, 56(3): 167‐176.
Melzer, T., 2007. Non‐parametric Segmentation of ALS Point Clouds Using Mean Shift. Journal of Applied Geodesy, 1(3): 159‐170.
Menq, C.H., Yau , H.T. and Lai, G.Y., 1992. Automated Precision Measurement of Surface Profile in CAD-directed Inspection. IEEE Trans. Robotics and Automation, 8(2): 268-278.
Miliaresis, G. and Kokkas, N., 2007. Segmentation and Object‐based Classification for the Extraction of the Building Class from LiDAR DEMs. Computers & Geosciences, 33(8): 1076‐1087.
Mitra, N.J., Gelfand, N., Pottmann, H. and Guibas, L., 2004. Registration of Point Cloud Data from a Geometric Optimization Perspective. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pp. 22-31.
Optech, 2000. ILRIS-3D Intelligent Laser Ranging and Imaging Systems. Available on URL: http://www.optech.ca/pdf/Brochures/ilris_36d.pdf (30/05/2012).
Oude Elberink, S.J. and Vosselman, G., 2009. 3D Information Extraction from Laser Point Clouds Covering Complex Road Junctions. The Photogrammetric Record, 24(125): 23‐36.
Persson, A., Soderman, U., Topel, J. and Ahlberg, S., 2005. Visualization and Analysis of Full-waveform Airborne Laser Scanner Data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(Part 3/W19), pp. 103-108.
Pfeifer, N. and Bohm, J., 2008. Advances in Photogrammetry, Remote Sensing and Spatial Information Sciences. In: Proceeding of International Society for Photogrammetry and Remote Sensing Congress Book. Z. Li, J. Chen and E. Baltsavias, CRC Press. 7: 169-184.
Popescu, S.C. and Zhao, K., 2008. A Voxel‐based LiDAR Method for Estimating Crown Base Height for Deciduous and Pine Trees. Remote Sensing of Environment, 112(3): 767‐781.
Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T., 1988. Numerical Recipes in C. The Art of Scientific Computing, Cambridge University Press, Cambridge, UK.
Pu, S. and Vosselman, G., 2006. Automatic Extraction of Building Features from Terrestrial Laser Scanning. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(Part 5), pp.5, on CD-ROM.
Rabbani, T. and Heuvel F., 2005. Efficient Hough Transform for Automatic Detection of Cylinders in Point Clouds. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(Part 3/W19), pp.60-65.
Rabbani, T., 2006. Automatic Reconstruction of Industrial Installations Using Point Clouds and Images. Ph.D. Dissertation, Delft University of Technology, 175 p.
Rabbani, T., Dijkman, S., Heuvel, F. and Vosselman , G., 2007. An Integrated Approach For Modelling and Global Registration of Point Clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 61(6): 355-370.
Rehor, M., Bahr, H., Tarsha‐Kurdi, F., Landes, T. and Grussenmeyer, P., 2008. Contribution of Two Plane Detection Algorithms to Recognition of Intact and Damaged Buildings in LiDAR Data. The Photogrammetric Record, 23(124): 441‐456.
Robotique, P., Epidaure, P., Feldmar, J., and Ayache, N., 1994. Rigid, Affine and Locally Affine Registration of Free-Form Surfaces. International Journal of Computer Vision, 18(18): 99-119.
Rottensteiner, F., Trinder, J., Clode, S. and Kubik, K., 2007. Building Detection by Fusion of Airborne Laser Scanner Data and Multi‐Spectral Images: Performance Evaluation and Sensitivity Analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 62(2): 135‐149.
Rottensteiner, F. and Clode, S., 2008. Building and Road Extraction by LiDAR and Image. In: J. Shan and C.K. Toth (Editors), Topographic Laser Ranging and Scanning Principles and Processing. CRC Press, Boca Raton, FL, pp. 445‐478.
Rusinkiewicz, S. and Levoy, M., 2001. Efficient Variants of the ICP Algorithm. In: International Conference on 3-D Digital Imaging and Modeling, pp. 145-152.
Sampath, A. and Shan, J., 2010. Segmentation and Reconstruction of Polyhedral Building Roofs from Aerial LiDAR Point Clouds. IEEE Transactions on Geoscience and Remote Sensing, 48(3): 1554‐1567.
Sanso, F., 1973. An Exact Solution of the Roto-Translation Problem. Photogrammetria, 29(6): 203-216.
Sankaranarayanan, J., Samet, H. and Varshney, A., 2007. A Fast All Nearest Neighbor Algorithm for Applications Involving Large Point‐Clouds. Computers & Graphics, 31(2): 157‐174.
Scaioni, M., 2005. Direct Georeferencing of TLS in Surveying of Complex Sites. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(Part 5/W17), Mestre (Italy), on CD-ROM.
Schnabel, R., Wahl, R. and Klein, R., 2007. Efficient RANSAC for Point-Cloud Shape Detection, Computer Graphics Forum, 26(2): 214-226.
Schuster, H.F., 2004. Segmentation of LiDAR Data Using the Tensor Voting Framework. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 35, pp.1073‐1078.
Shan, J. and Sampath, A., 2008. Building Extraction from LiDAR Point Clouds Based on Clustering Techinques. In: J. Shan and C.K. Toth (Editors), Topographic Laser Ranging and Scanning Principles and Processing. CRC Press, Boca Raton, FL, pp. 421-444.
Sharp, G.C., Lee, S.W. and Wehe, D.K., 1999. Invariant Features and the Registration of Rigid Bodies. Proc. IEEE Int. Conf. Robotics and Automation, Detroit, Michigan, May, pp. 932-937.
Sharp, G.C., Lee, S.W. and Ehe, D.K., 2002. ICP Registration Using Invariant Features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1): 90-102.
Shakarji, C.M., 1998. Least‐Squares Fitting Algorithms of the NIST Algorithm Testing System. Journal of Research of National Institute of Standards and Technology, 103: 633‐641.
Stamos, I. and Allen, P.K., 2001. Automatic Registration of 2-D with 3-D Imagery in Urban Environments. In: Proceedings of the 8th IEEE International Conference on Computer Vision, 2, pp. 731-736.
Stamos, I. and Allen, P.K., 2002. Geometry and Texture Recovery of Scenes of Large Scale. Computer Vision and Image Understanding, 88(2): 94-118.
Stamos, I. and Leordeanu, M., 2003. Automated Feature-based Range Registration of Urban Scenes of Large Scale. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2, pp. 555-561.
Sohn, G., Huang, X. and Tao, V., 2008. A Data‐Driven Method for Modeling 3D Building Objects Using a Binary Space Partitioning Tree. In: J. Shan and C.K. Toth (Editors), Topographic Laser Ranging and Scanning Principles and Processing. CRC Press, Boca Raton, FL, pp. 479‐509.
Tarsha-Kurdi, F., Landes, T. and Grussenmeyer, P., 2007. Hough-transform and Extended RANSAC Algorithms for Automatic Detection of 3-D Building Roof Planes from LiDAR Data. International Archives of Photogrammetry and Remote Sensing, 26(Part 3/W52), pp. 407-412.
Tao, C.V., 2000. Mobile Mapping Technology for Road Network Data Acquisition, Journal of Geospatial Engineering, 2(2): 1-13.
Tao, V. and Li, J., 2007. Advances in Mobile Mapping Technology. ISPRS Book Series, Taylor & Francis Group, 176 p.
Thapa, A., Pu, S. and Gerke, M., 2009. Semantic Feature Based Registration of Terrestrial Point Clouds. In: Bretar F, Pierrot-Deseilligny M, Vosselman G (Editors) Laser scanning 2009, International Archives of Photogrammetry and Remote Sensing, 38(Part 3/W8), Paris, France, September 1-2, pp. 230-235.
Trimble, 2005. GS200 Declaration of Conformity. Available on URL: http://www.accupoint.com/uploads/ebay/Untitled.PDF (26/04/2012).
Tseng, Y.H. and Wang, M., 2005. Automatic Plane Extraction from LiDAR Data Based on Octree Splitting and Merging Segmentation. In: 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS'05, 5, pp. 3281‐3284.
Tseng, Y.H., Tang, K.P. and Chou, F.C., 2007. Surface Reconstruction from LiDAR Data with Extended Snake Theory. Lecture Notes in Computer Science, 4679, pp.479-492.
Tseng, Y.H., Liu, P.W. and Chou, F.C., 2008. Modeling Urban Landscapes with Integrated Datasets. Journal of the Chinese Institute of Engineers, 31(5): 853‐859.
Ullrich, A., Schwarz, R. and Kager, H., 2003. Using Hybrid Multi-Station Adjustment for an Integrated Camera Laser-Scanner System. In: Proceedings of the 6th conference on Optical 3-D measurement Techniques, Zurich, Switzerland, pp. 298-304.
Viejo, D. and Cazorla, M., 2006. Plane Extraction and Error Modeling of 3D Data. 5TH International Symposium on Robotics and Automation, San Miguel Regla Hidalgo, Mexico, on CD-ROM.
Vosselman, G., Gorte, B.G.H., Sithole, G. and Rabbani, T., 2004. Recognising Structure in Laser Scanner Point Clouds. International Archives of Photogrammetry and Remote Sensing, 36(part 8/W2), pp. 33‐38.
von Hansen, W., 2007. Registration Of Agia Sanmarina LiDAR Data Using Surface Elements, International Archives of Photogrammetry and Remote Sensing, 36(Part 3/W49A), pp. 93-97.
von Hansen, W., Gross, H. and Thoennessen, U., 2008. Line-based Registration of Terrestrial and Aerial LiDAR Data, In: Proceeding of International Society for Photogrammetry and Remote Sensing Congress, 37(Part B/3a), pp. 161-166.
Walker, M.W., Shao, L. and Volz, R.A., 1991. Estimating 3-D Location Parameters Using Dual Number Quaternions. Graphical Models and Image Processing: Image Understanding, 54: 358 - 367.
Wang, Z. and Brenner, C., 2008. Point Based Registration of Terrestrial Laser Data Using Intensity and Geometry Features. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, Part B5, pp. 583-590.
Wang, M. and Tseng, Y.H., 2010. Automatic Segmentation of LiDAR Data into Coplanar Point Clusters Using an Octree‐based Split‐and‐Merge Algorithm. Photogrammetric Engineering and Remote Sensing, 76(4): 407-420.
Wendt, A., 2007. A Concept for Feature Based Data Registration by Simultaneous Consideration of Laser Scanner Data and Photogrammetric Images. ISPRS Journal of Photogrammetry and Remote Sensing, 62(2): 122-134.
Woo, H., Kang, E., Wang, S. and Lee, K.H., 2002. A New Segmentation Method for Point Cloud Data. International Journal of Machine Tools & Manufacture, 42: 167‐178.
Wu, H., Yoshikawa, G., Shioyama, T., Lao, T. and Kawade, M., 2002. Glasses Frame Detection with 3-D Hough Transform. 16th International Conference on Pattern Recognition, 2, pp. 346-349.
Wyngaerd, J. V., Gool, L. V., Koch, R. and Proesmans, M., 1999. Invariant-based Registration of Surface Patches. Proc. IEEE International Conference on Computer Vision, Corfu, Greece, 20-27 September, pp. 301-306.
Xu, Z. and Li, Z., 2000. Least Median of Squares Matching for Automated Detection of Surface Deformations. International Archives of Photogrammetry and Remote Sensing, 33(Part B3/2), pp. 1000-1007.
Yamany, S.M. and Farag, A.A., 1999. Free-form Surface Registration Using Surface Signatures. IEEE International Conference on Computer Vision, Corfu, Greece, 20-27 September, pp. 1098-1104.
Yamany, S.M., Farag, A.A., 2002. Surfacing Signatures: An Orientation Independent Free-form Surface Representation Scheme for the Purpose of Objects Registration and Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (8): 1105-1120.
Young, W.J., 2011. Using the Lynx Mobile Mapper to Survey a Levee. The American Surveyor, 8(1), available on URL: http://www.amerisurv.com/PDF/
TheAmericanSurveyor_Young-ScanningLevees_Vol8No1.pdf(30/04/2012).
Zhang, Z., 1994. Iterative Point Matching for Registration of Free-form Curves and Surfaces. International Journal of Computer Vision, 13(2): 119-152.
Zhang, Y., Zhang, Z., Zhang, J. and Wu, J., 2005. 3D Building Modelling with Digital Map, LIDAR Data and Video Image Sequences. Photogrammetric Record, 20(111): 285‐302.
Zhang, K., Yan, J. and Chen, S.C., 2008. A Framework for Automated Construction of Building Models from Airborne LiDAR Measurements. In: J. Shan and C.K. Toth (Editors), Topographic Laser Ranging and Scanning Principles and Processing. CRC Press, Boca Raton, FL, pp. 511‐534.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63726-
dc.description.abstract光達快速獲取高密度三維點雲之效益使其於數位城市建模、環境與工程監檢
測以及古蹟文物保存等應用受到廣泛關注,而光達點雲套合為點雲資料處理程序
中重要環節之一。就地面光達系統而言,為描述全部場景資訊往往需在不同視點
進行多測站掃描,並將不同測站之點雲資料套合至相同坐標基準;相對於已知方
位資訊的空載與車載系統,套合可視為不同航線間之最佳擬合程序以消除相鄰資
料間的微小偏差。此外,不同光達平台的資料整合亦在各相關領域中具有實務上
的需求。有鑑於此,本研究基於點、直線與平面三種空間幾何元件,針對特徵式
點雲套合三個主要程序(特徵萃取、匹配以及轉換參數估計)分別提出多重特徵偵測
元、RSTG 匹配法以及多重特徵轉換模式,藉由不同特徵整合之效益,建構高度自
動化、適合各類型點雲套合任務且可進行多測站點雲同時套合之特徵式點雲套合
模組。
以幾何特徵為基礎之光達點雲資料套合必須倚賴方便、明確、高品質及可靠
的特徵資料,由於平面特徵具有顯著的幾何辨別性與簡單的數學解析式,相關研
究多針對平面特徵為處理對象。然而,無論以何種光達平台進行點雲收集,平面
特徵的分布幾何皆相對單調,往往難以滿足套合作業所需的穩固幾何轉換或以平
面交會產製角點與直線特徵等應用。本研究建構的多重特徵偵測元藉由影像處理
與群聚分析方法,搭配由粗到細的執行策略,可有效率地基於原始點雲品質獲取
精確的直線、平面以及點特徵。不僅免除套合實務上人工量測或佈設控制特徵之
需求,接續之RSTG 匹配法更可由萃取成果中獲取共軛特徵,並同時估計測站間
的近似轉換關係,提供非線性多特徵轉換參數估計使用,達到高度自動化點雲套
合成效。
環顧現有的點雲套合相關研究成果,鮮少具備整合點、線、面三種幾何特徵
以及能適用於不同類型點雲套合任務之自動化程序。而本研究除了對於各階段建
構之數學模式以模擬及實際資料進行驗證分析外,亦針對多重幾何特徵整合之效
益、參數估計平差模式以及套合基準之選取等因素,對於套合精度品質之影響進
行探討,其成果有助於對於點雲資料處理方式以及各式幾何特徵於套合作業之效
用更深入的了解。除此之外,各階段程序所發展之方法或工具不僅可獨立使用,
行使其個別功能,亦可作為它項應用之部分元件,具有高度的後續發展性。
zh_TW
dc.description.abstractAs a developing 3-D surface measurement and mapping technology, LiDAR (light detection and ranging) continues to attract research attention in many application areas. Registration of overlapping LiDAR point clouds is typically required and constitutes an essential data processing step to form a comprehensive 3-D scene. Point clouds being registered may well be strips from aerial LiDAR, routes from mobile LiDAR or individual static terrestrial scans. Indeed, the required registration may also be between different LiDAR platforms, aerial and terrestrial LiDAR for example. In general, registration can be carried out with the aid of artificial markers, utilizing surface matching approaches or employing geometric features implied within point clouds. Research about integrating multiple feature matching that provides choices as to the optimal configuration against geometric scene restrictions is currently limited, and integrated schemes which comprise the extraction of features, matching and estimation of transformation parameters without the aid of artificial markers and initial approximations have yet to be reported. Moreover, most existing registration methods are designed for a single type of LiDAR and do not fully support cross-platform registration.
This research proposed a feature-based approach for LiDAR point cloud registration, which can efficiently handle registration between point clouds from both single- and multi-platform LiDAR without the aid of either markers or the provision of initial approximations for 3-D transformation parameters. Depending upon the geometric characteristics of the point clouds to be registered, primary features, including points, lines and planes, are employed. Each feature type can be used either exclusively or in combined fashion. The proposed working scheme comprises three kernels, namely a feature extractor for feature acquisition, a RSTG approach as a feature matching technique and, finally, a robust transformation model for the estimation of transformation parameters. It should be noted that these three individual parts are not necessarily tied to each other, that is, each means included in the study can be working independently in the scope of this research or cooperated with other applications. Furthermore, this study investigated into the effects upon registration quality in terms of the multiple feature integration, adjustment models for the estimation of transformation parameters and the choice of a reference frame. It would give an in-depth exploration of the optimization of data processing as well as the benefits of multiple features in a registration task. This study has been proven accomplishing a comprehensive, highly flexible and effective point cloud registration working approach.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:17:24Z (GMT). No. of bitstreams: 1
ntu-101-D95521008-1.pdf: 7702787 bytes, checksum: 3c463c72b2c188716fb926e644f44e93 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgements .......................................................................................................... ii
中文摘要 ......................................................................................................................... iii
Abstract........................................................................................................................... iv
Table of Contents.............................................................................................................. v
List of Figures................................................................................................................ viii
List of Tables .................................................................................................................... x
Glossary of Terms............................................................................................................ xi
Chapter 1 .......................................................................................................................... 1
Introduction ...................................................................................................................... 1
1.1 Overview ......................................................................................... 2
1.1.1 Target-based registration .................................................................. 4
1.1.2 Surface-based registration ................................................................ 4
1.1.3 Feature-based registration................................................................. 6
1.1.4 Image-based registration................................................................... 8
1.1.5 Direct georeferencing ....................................................................... 9
1.1.6 Comparison of registration approaches ............................................ 9
1.2 Effectiveness of combining multiple features ............................... 10
1.3 Research objective and scope .........................................................11
1.4 Thesis outline................................................................................. 13
Chapter 2 ........................................................................................................................ 15
Multiple Feature Extractor.............................................................................................. 15
2.1 Overview ....................................................................................... 16
2.2 Feature line acquisition.................................................................. 18
2.3 Feature plane acquisition............................................................... 24
2.4 Feature point acquisition ............................................................... 28
2.5 Experimental evaluation ................................................................ 30
2.6 Concluding remarks....................................................................... 33
Chapter 3 ........................................................................................................................ 35
RSTG Approach ............................................................................................................. 35
3.1 Overview ....................................................................................... 36
3.2 Rotation alignment ........................................................................ 37
3.2.1 Matches mining via rotation estimation ......................................... 40
3.2.2 Orthogonal matrix check ................................................................ 40
3.2.3 Consensus check............................................................................. 40
vi
3.3 Scale estimation............................................................................. 41
3.4 Translation alignment .................................................................... 42
3.5 Geometric check............................................................................ 43
3.6 Experimental evaluation ................................................................ 43
3.6.1 Statistical assessment...................................................................... 44
3.6.2 Practical case one............................................................................ 45
3.6.3 Practical case two ........................................................................... 48
3.7 Concluding remarks....................................................................... 50
Chapter 4 ........................................................................................................................ 52
Multi-feature Transformation ......................................................................................... 52
4.1 Overview ....................................................................................... 53
4.2 Line-based transformation model.................................................. 55
4.3 Plane-based transformation model ................................................ 57
4.4 Integration of features in transformation models .......................... 59
4.5 Adjustment model for the multi-feature transformation................ 60
4.6 Simultaneous adjustment model for global registration................ 62
4.7 Quality indicators .......................................................................... 63
4.8 Experimental evaluation ................................................................ 65
4.8.1 Registration effectiveness of diverse features ................................ 65
4.8.2 Effectiveness of weighted adjustment and the simultaneous
adjustment model on registration quality ...................................... 69
4.8.3 Reference frame analysis of cross-platform registration................ 74
4.9 Concluding remarks....................................................................... 76
Chapter 5 ........................................................................................................................ 78
Cases of Point Cloud Registration.................................................................................. 78
5.1 Overview ....................................................................................... 79
5.2 Registration of terrestrial LiDAR.................................................. 79
5.2.1 Feature extraction results................................................................ 80
5.2.2 Feature matching results................................................................. 82
5.2.3 Registration results ......................................................................... 82
5.3 Fusion of terrestrial and aerial LiDAR.......................................... 85
5.3.1 Feature extraction results................................................................ 87
5.3.2 Feature matching results................................................................. 88
5.3.3 Registration results ......................................................................... 90
5.4 Concluding remarks....................................................................... 93
Chapter 6 ........................................................................................................................ 94
Conclusions and Further Work ....................................................................................... 94
6.1 Conclusions ................................................................................... 95
vii
6.2 Further work .................................................................................. 96
References ...................................................................................................................... 98
Appendix A: Sufficient datum on feature basis .............................................................111
Appendix B: Positioning accuracy of LiDAR...............................................................112
B.1 Horizontal scanning pattern of terrestrial LiDAR ........................112
B.2 Vertical scanning pattern of terrestrial LiDAR.............................113
Curriculum Vitae ...........................................................................................................115
dc.language.isoen
dc.subject光達zh_TW
dc.subject幾何特徵zh_TW
dc.subject萃取zh_TW
dc.subject匹配zh_TW
dc.subject套合zh_TW
dc.subjectRegistrationen
dc.subjectLiDARen
dc.subjectGeo-featureen
dc.subjectExtractionen
dc.subjectMatchingen
dc.title以幾何特徵為基礎之光達點雲套合zh_TW
dc.titleFeature-based Registration of LiDAR Point Cloudsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳良健,史天元,曾義星,韓仁毓,徐百輝
dc.subject.keyword光達,幾何特徵,萃取,匹配,套合,zh_TW
dc.subject.keywordLiDAR,Geo-feature,Extraction,Matching,Registration,en
dc.relation.page117
dc.rights.note有償授權
dc.date.accepted2012-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
7.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved