請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63717完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋孔彬 | |
| dc.contributor.author | Chih-Chiang Chang | en |
| dc.contributor.author | 張智強 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:17:08Z | - |
| dc.date.available | 2013-08-19 | |
| dc.date.copyright | 2012-08-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-18 | |
| dc.identifier.citation | 1. Vadim Backman, Venkatesh Gopal, Maxim Kalashnikov, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy”, IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 7, NO. 6, 2001
2. L. T. Perelman, V. Backman, M. Wallace, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett., vol. 80, pp. 627–630, 1998 3. Rebekah Drezek, Andrew Dunn, and Rebekah Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements”, APPLIED OPTICS Vol. 38, No. 16 (1999). 4. M. B. Wallace, L. T. Perelman, V. Backman, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,”Gastroenterol., vol. 119, p. 677, 2000 5. V. Backman, M. B. Wallace, L. T. Perelman, “Detection of preinvasive cancer cells in situ,” Nature, vol. 406,pp. 35–36, July 2000. 6. L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution”, Opt. Lett. 80, 627-630.1998 7. Kalashnikov M, Choi W, Hunter M, Yu CC, Dasari RR, Feld MS. “Assessing the contribution of cell body and intracellular organelles to the backward light scattering”, Opt Express. 16 Jan 20(2):816-26. 2012 8. M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30, 3051–3053 .,2005 9. T. T. Wu, J. Y. Qu, and M. Xu, “Unified Mie and fractal scattering by biological cells and subcellular structures,” Opt. Lett. 32, 2324–2326,2008 10. Wonshik Choi, Christopher Fang-Yen, “Tomographic phase microscopy” NATURE METHODS VOL.4 NO.9 SEPTEMBER 2007 11. Kamran Badizadegan1,2Christopher Fang-Yen, Seungeun Oh, Yongkeun Park “Imaging voltage-dependent cell motions with heterodyne Mach-Zehnder phase microscopy” Optics Letters, Vol. 32, Iss. 11, pp. 1572–1574 (2007) 12. K. YEE, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media”, IEEE Transactions on Antennas and Propagation, vol. 14, issue 3, pp. 302-307 (1966). 13. Taflove, A., “Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method”, Artech House, 2005. 14. J. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves”, J. Computational Physics, Volume 114, Issue 2, October, Pages 185-200, 1994 15. Kuniyuki Motojima and Shogo Kozaki, “A HYBRID TECHNIQUE COMBINING FDTD AND SERIES SOLUTION FOR NEAR-TO-FAR-FIELD TRANSFORMATION”, International Journal of Infrared and Millimeter Waves, Vol. 23, No. 1, 2002 16. R. Drezek, M.Guillaud,T.Collier,‘‘Light scattering from cervical cells throughout neoplastic progression:Influence of nuclear morphology,DNA content,and chromatin texture,’’J.Biomed. Opt. 8~1, 7–16, 2003 17. J. M. Schmitt and G. Kumar,‘‘Turbulent-nature of refractive-index variations in biological tissue,’’ Opt. Lett. 21(16), 1310–1312(1996). 18. Louise E. Smith, Vanessa Hearnden, Zenghai Lu ‘‘Evaluating the use of optical coherence tomography for the detection of epithelial cancers in vitro’’ Journal of Biomedical Optics 16(11), 116015 (November 2011) 19. Rakesh Patel,a Ashraf Khan,b Dennis Wirth, ‘‘Multimodal optical imaging for detecting breast cancer’’ Journal of Biomedical Optics 17(6), 066008 (June 2012) 20. Croce CM (January 2008). 'Oncogenes and cancer'. N. Engl. J. Med. 358 (5): 502–11,2008 21. Murgia C, Pritchard JK, Kim SY, Fassati A, 'Clonal origin and evolution of a transmissible cancer' ,Cell 126, 477–487, August 11, 2006 22. Weiss RA (August 2006). Adam M. Zysk, Freddy T. Nguyen ” Optical coherence tomography: a review of clinical development from bench to bedside” Journal of Biomedical Optics 125, 051403 September/October 2007 23. Z. Ge, K. Schomacker, and N. Nishioka, “Identification of colonic dysplasia and neoplasia by diffuse reflectance spectroscopy and pattern recognition techniques”, Appl. Spectrosc. 52, 833-839 (1998). 24. M. Kerker. “ The scattering of light and other electromagnetic radiation. ” Academic, New York, 1969. 25. H.C. van de Hulst. Light scattering by small particles. John Wiley & Sons, New York, 1957. (Paperback by Dover Publications, New York, 1981) 26. C.F. Bohren and D.R. Huffman. “ Absorption and scattering of light by small particles. ” John Wiley & Sons, New York, 1983. 27. J. Mourant, T. Fuselier, J. Boyer, T. Johnson, and I. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms”, Appl. Opt. 36, 949-957 (1997). 28. Judith R. Mourant, James P. Freyer, Andreas H. Hielscher, Angelia A. Eick, Dan Shen, and Tamara M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics”, APPLIED OPTICS, Vol. 37, No. 16, 1998 29. G. J. Tearney ,M. E. Brezinski and J. F. Southern, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography” OPTICS LETTERS / Vol. 20, No. 21 / November 1, 1995 30. J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue” OPTICS LETTERS / Vol. 21, No. 16 / August 15, 1996 31. Jeremy D. Rogers, Ilker R. Capoglu, “Nonscalar elastic light scattering from continuous random media in the Born approximation” June 15, OPTICS LETTERS, Vol. 34, No. 12, 2009 32. Min Xu, Tao T. Wu, “Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures” Journal of Biomedical Optics 13-2, 024015,March/April 2008 33. Dizem Arifler, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition” Journal of Biomedical Optics 8(3), 484–494 (July 2003) 34. Xuantao Su, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells” Journal of Biomedical Optics 16(6), 067003 (June 2011) 35. Xu Li, “Recent Progress in Exact and Reduced-Order Modeling of Light-Scattering Properties of Complex Structures” IEEE JOURNAL ECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 11, NO. 4, JULY/AUGUST 2005 36. Rebekah Drezek, Martial Guillaud, “ Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology,DNA content, and chromatin texture” Journal of Biomedical Optics 8(1), 7–16 (January 2003) 37. Y.liu,et al., “Elastic backscattering spectroscopic microscopy” Opt.Lett., vol.30,pp.2445-2447.2005 38. R. Barer, “Refractometry and Interferometry of Living Cells,” J. Opt. Soc. Am. 47, 545-56 (1957). 39. Konstantin Sokolov, Rebekah Drezek, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology”, 20 December 1999 / Vol. 5, No. 13 / OPTICS EXPRESS 302 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63717 | - |
| dc.description.abstract | 癌症是一個人類仍然感到棘手的疾病,而其中對於癌症和正常細胞在光學上的散射特性,尤其是細胞的散射光譜,如果能開發一套模擬工具去模擬,把細胞散射和折射率或細胞大小的關係量化,找出正常細胞與病變細胞的不同,有機會可以實踐光學非侵入式的癌前病變檢測。
本篇論文主要使用的模擬方法為有限差分時域(FDTD)法,利用馬克斯威爾方程式做基礎來做散射物的模擬,此方法可以很彈性的調變散射物的介電系數和形狀,甚至式入射波的形狀等等,來做不同的模擬,我們可以利用此方法做正常細胞和癌症細胞的模擬,並藉由癌症細胞和正常細胞結構和折射率的不同,找出折射率或大小等參數和細胞散射場可能的關係。 而本篇所使用的細胞模型,是用近年發展的相位顯微術(Tomography Phase Microscopy),以實驗的方式取得以前論文無法取得之細胞三維的折射率分布影響以及細胞的型態,大大提升模擬的精確度以及可信度。 | zh_TW |
| dc.description.abstract | Tumor now is still a troublesome disease for human. Since light scattering is very sensitive to the cell structure and refractive index, if I could build up the tool to simulate the light scattering phenomenon of different kind of cells such as cancer and normal,and it may be a potential database for clinical diagnosis for non-invasive epithelium cancer in the future.
In my thesis, I apply finite difference time domain (FDTD) method to build up my simulation tool. The FDTD method is based on Maxwell Equations in Electromagnetics. Furthermore, It is very flexible and reliable methods that you can modify many parameters such as structure or refractive index of scattering objects, and even the waveform incident wave. We can use this method to simulate the light scattering of cancerous cell and normal cell and try to find there feature by FDTD method. Last but not least, I also make use of the data obtained from the Tomography Phase Microscopy, which could provide the precise three dimensional refractive index composition of cell and even the morphology of cell. This is the kind of breakthrough that we can simulate the light scattering of cell using the exact experimental data but not an refractive index average of the cell which are usually used by previous research. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:17:08Z (GMT). No. of bitstreams: 1 ntu-101-R99945007-1.pdf: 2814778 bytes, checksum: 17018f343ec817cebb389d5780ffe0ba (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書…………………………………………………… i
誌謝…………………………………………………………………….. ii 中文摘要………………………………………………………………..iii 英文摘要…………………………………………………………….....iv 第一章 簡介………………………………………………………1 1-1研究動機 ………………………………………………………….1 1-2研究目標 ………………………………………………………….3 1-3文獻背景 ………………………………………………………….4 第二章 研究方法…………………………………………………10 2-1 The Introduction of FDTD…………………………………10 2-2 The Yee Algorithm…………………………………………...10 2-3 PML Boundary Condition………………………………….16 2-4 Light Source and TF/SF Formulation…………………...22 2-5 Near-to-Far-Field Transform……………………………...25 第三章 程式驗證與分析 …………………………………………30 3-1 Comparisons with Mie Theory…………………………….30 3-2 Analysis of different Grid Sampling……………………...37 第四章 cell的模型建構散射光譜………………………………..41 4-1 細胞折射率模型建構方法 ………………………………………………….41 4-2 模擬使用細胞………………………………………………………44 第五章 cell的FDTD模擬…………………………………………..47 5-1 細胞散射結果………………………………………………………47 5-2 細胞核折射率調變…………………………………………………57 第六章 結論與討論 ……………………………………………………..63 參考文獻 …………………………………………………………………...66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 相位顯微術 | zh_TW |
| dc.subject | 有限差分時域法 | zh_TW |
| dc.subject | 細胞結構和折射率 | zh_TW |
| dc.subject | 散射光譜 | zh_TW |
| dc.subject | Finite Difference Time Domain | en |
| dc.subject | Mie theory | en |
| dc.subject | Tomography Phase Microscopy | en |
| dc.subject | Refraction Index Variation | en |
| dc.subject | Cell Structure | en |
| dc.subject | Lightscattering | en |
| dc.title | 利用有限差分時域法來模擬正常細胞和病變細胞的細胞散射光 | zh_TW |
| dc.title | Using Finite-Difference Time-Domain Method
to Study Light Scattering Difference between Normal and Cancerous cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曾雪峰,李章銘 | |
| dc.subject.keyword | 有限差分時域法,細胞結構和折射率,散射光譜,相位顯微術, | zh_TW |
| dc.subject.keyword | Finite Difference Time Domain,Lightscattering,Cell Structure,Refraction Index Variation,Tomography Phase Microscopy,Mie theory, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
