Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63710
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor毛明華
dc.contributor.authorChia-Hung Linen
dc.contributor.author林家鴻zh_TW
dc.date.accessioned2021-06-16T17:16:58Z-
dc.date.available2015-08-22
dc.date.copyright2012-08-22
dc.date.issued2012
dc.date.submitted2012-08-17
dc.identifier.citation[1] K.J.Vahala, “Optical microcavitities,” Natural,vol.424, pp.839(2003)。
[2] S.L. McCall, A.F.J. Levi, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett,60, 3(1992)
[3] Z.Zhang,L.Yang, “Visible submicron microdisk lasers,” Appl. Phys. Lett,90, 111119(2007)
[4] E. Hosseini, S. Yegnanarayanan, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express,17, 14543-14551 (2009)
[5] K. C.Zeng, L. Dai, J. Y. Lin, and H. X. Jiang, “Optical resonance modes in InGaN/GaN multiple-quantum-well microring cavities,” Appl. Phys. Lett., 75, pp. 2563-2565(1999)
[6] P. Barclay, K. Srinivasan, O. Painter, B. Lev, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett,89, 131108(2006)
[7] M. Ghulinyan,D. Navarro-Urrios, “Whispering-gallery modes and light emission from a Si-nanocrystal-based single microdisk resonator,”Opt.Express,17,pp. 13218-13242 (2008)
[8] M.Kahl,T.Thomay, “Collidal quantum dots in all dielectric high-Q pillar microcavity,” Nano Lett,vol.7,no.9,pp.2897-2900(2007)
[9] X.Fan,M.C.Lonergan, “Enhanced spontaneous emission from semiconductor nanocrystals embedded in whispering gallery optical microcavities,” Phys. Rev.B,vol. 64,115310(2001)
[10] E. Borovitskaya, M. Shur, Quantum Dots (Selected Topics in Electronics and Systems, Vol. 25), World Scientific Publishing (2002)
[11] G. Schmod, Nanoparticles: from theory to application, Wiley(2004)
[12] S. Gimenez, I. Mora-Sero, L. Macor, N. Guijarro, T.Lana-Villarreal, R. Gomez, L.J. Diguna, Q.Shen, T.Toyoda, and J. Bisquert, “Improving the performance of colloidal quantum-dot-sensitized solar cells,” I.O.P (2009)
[13] M.A. Hines and Guyot-Sionnest, , “Synthesis and characterization of strongly luminescence ZnS-capped CdSe nanocrystals,” J.Phys.Chem.,vol.100, pp.468-471 (1996)
[14] http://depts.washington.edu/chem/people/faculty/ginger.html,(Date retrived, June 17th, 2012)
[15] Tso Chen, “Fabrication and characterization of dielectric microdisks with embedded colloidal quantum dots,” Master’s Thesis, National Taiwan University, Taipei(2010)
[16] B.D. Jones, V.N. Astratov, “Whispering gallery mode in quantum dot micropillar cavities,” Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Optical Society of America(2008)
[17] Y.F. Xiao, C.L. Zou, P. Xue, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. Lett.,81, 053807(2010)
[18] H.Y. Ryu, M. Notomi, G.H. Kim, “High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity,” Opt. Express,12,pp. 1708-1719(2004)
[19] J. Heebner, R. Grover, T. Ibrahim, Optical Microresonators: Theory, Fabrication and Applications, Springer (2008)
[20] R.J. Zhang, S.Y. Seo, “Visible range whispering-gallery modes in microdisk array based on sized-controlled Si nanocrystals,” Appl. Phys. Lett ,88,153120(1992)
[21] L.A. Coldren, S.W Corzine, Diode lasers and photonic integrated circuits, Wiley(2004)
[22] C.H Wu, H.H Hsieh, “Self-aligned top-gate coplanar In-Ga-Zn-O thin film transistors,” IEEE Display technology ,Journal of, vol. 5, pp.515-519(2009)
[23] www.microchemcal.eu/technical_information, (Date retrieved, June 25th, 2012)
[24] J. Verbert, F. Mazen, ‘Efficient coupling of Er-doped silicon-rich oxide to microdisk whispering gallery modes,” Appl. Phys. Lett, 86, 111117 (2005)
[25] J. Rantala, J. Hartikainen, J. Jaarinen, “Photothermal determination of vertical crack lengths in silicon nitride,” Appl. Phys. Lett, 50, pp.465-471 (1990)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63710-
dc.description.abstract本文中微碟共振腔採用硒化鎘/硫化鋅膠狀量子點為主動材料,以二倍頻532奈米Nd:YAG固態雷射激發,實現於可見光600奈米附近的微碟共振腔雷射。我們製作微碟以二氧化矽層中間埋覆硒化鎘/硫化鋅膠狀量子點,直徑8微米和10微米。8微米的微碟Q值約3000,並且在10微米的微碟共振腔在室溫環境下成功量測到迴音廊模態,其Q值大約3100,雷射閾值約85μw。
相較大部分研究半導體微碟雷射,二氧化矽介電質微碟製程簡單並且成本較低。若要製作尺寸更小的微碟,在光感測器、積體電路上等方面加以應用,考慮損耗會隨尺寸愈小而增加,所以我們更進一步製作氮化矽微碟。氮化矽折射率高於二氧化矽,可增進微碟邊緣與周圍空氣的折射率差,光的侷限性更好,Q值越高。然而,二氧化矽微碟在雷射激發無損壞的問題,但氮化矽微碟卻會因雷射功率過大產生損壞,改變氮化矽成長參數矽甲烷的流量,雖降低了氮化矽折射率,但結構較不容易損壞。矽甲烷125sccm的微碟,直徑4微米觀察到Q值約1000;矽甲烷76sccm的微碟,我們在直徑6微米與8微米皆觀察到迴音廊模態,Q值約400。本文也對於此加以做製程上的討論並改善,期望能達到更好的量測結果。
zh_TW
dc.description.abstractIn this thesis, dielectric microdisk resonators embedded with CdSe/ZnS colloidal quantum dots were demonstrated in the visible range of 600 nm. We fabricated silicon dioxide microdisks embedded with CdSe/ZnS colloidal quantum dots with diameters of 8 μm and 10 μm, respectively. Lasing has been observed for the 10-μm-diameter microdisk resonator, and the quality factor and the threshold pump power are about 3,100 and 85 μW, respectively.
Since silicon nitride has higher refractive index than silicon dioxide, better optical confinement and higher quality factor can be expected in silicon nitride microdisk resonators. However, silicon nitride microdisk resonators could be damaged with excessive pump power. The problem can be relieved by decreasing the flow rate of silane in the silicon nitride deposition process at the cost of lowering refractive index. The quality factor of a 4-μm-diameter microdisk resonator with silane flow rate of 125 sccm is about 1,000. For microdisk resonators with silane flow rate of 76 sccm, whispering gallery modes can also be observed for diameters of 6 μm and 8 μm, and the quality factors are about 400. We also discuss and improve the fabrication process to achieve better measurement results.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:16:58Z (GMT). No. of bitstreams: 1
ntu-101-R99941086-1.pdf: 4703922 bytes, checksum: dd8adf5c82ac911938b12e45d17a40d6 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents第一章 微碟共振腔 1
第一節 微碟共振腔介紹 1
第二節 量子點 3
第三節 研究動機 5
第二章 微碟共振腔理論 7
第一節 迴音廊模態 7
第二節 Q值 11
第三章 研究方法 13
第一節 製程 13
第二節 結構分析 16
第三節 實驗架設 24
第四章 討論 26
第一節 製程結果 26
第二節 二氧化矽微碟 28
第三節 氮化矽微碟 38
第五章 結論 49
參考文獻 51
dc.language.isozh-TW
dc.subject微碟共振腔zh_TW
dc.subject硒化鎘/硫化鋅膠狀量子點zh_TW
dc.subjectmicrodisken
dc.subjectCdSe/ZnS colloidal quantum dotsen
dc.title埋覆硒化鎘/硫化鋅膠狀量子點介電質微碟共振腔之雷射應用zh_TW
dc.titleDielectric Microdisks with Embedded CdSe/ZnS Colloidal Quantum Dots for Laser Applicationsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林浩雄,吳肇欣
dc.subject.keyword微碟共振腔,硒化鎘/硫化鋅膠狀量子點,zh_TW
dc.subject.keywordmicrodisk,CdSe/ZnS colloidal quantum dots,en
dc.relation.page53
dc.rights.note有償授權
dc.date.accepted2012-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
4.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved