Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63708
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇國棟(Guo-Dung Su)
dc.contributor.authorShih-An Tsaien
dc.contributor.author蔡適安zh_TW
dc.date.accessioned2021-06-16T17:16:55Z-
dc.date.available2015-08-20
dc.date.copyright2012-08-20
dc.date.issued2012
dc.date.submitted2012-08-18
dc.identifier.citation[1] http://en.wikipedia.org/wiki/Camera_phone
[2] Y.H. Chien, “The controlling method of deformable mirror used in auto-focusing optical system,” Master thesis, National Taiwan University, 2008.
[3] S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett., Vol. 85, No. 7, pp. 1128, 2004.
[4] H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Optics Express, Vol. 14, No. 18, pp. 8031, 2006.
[5] H. Ren and S.T. Wu “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett., Vol. 86, pp. 211107, 2005.
[6] H. Ren and S.T. Wu, “Variable-focus liquid lens,” Optical Express, Vol. 15, No. 10, pp. 5931, 2007.
[7] M. W. J. Prins, W. J. J. Welters, and J. W. Weekamp, “Fluid Control in Multichannel structure by electrocapilary pressure,” Science, Vol. 291, pp. 277, 2001.
[8] L. J. Hornbeck, “128 X 128 Deformable Mirror Device,” IEEE Transactions on Electrons Devices, vol. ED-30, No. 5, 1983.
[9] M. Sechaud, “Wave-front compensation devices,” In: Roddier F. (editor) Adaptive Optics in Astronomy. Cambridge: Cambridge. University Press, pp. 57-91, 1999.
[10] Y.H. Lin “Design and Applications of Reflective Optics System: Zoom System and Head-up Display System for Automobile,” Master Thesis, National Taiwan University, 2011.
[11] H.T. Hsieh, “Design and Fabrication of Compact Optical Devices: Organic Deformable Mirror and Microlens Arrays,” PhD Thesis, National Taiwan University, 2010.
[12] H.T. Hsieh et al., “Thin autofocus camera module by a large-stroke micromachined deformable mirror,” Optics Express, Vol. 18, Issue 11, pp. 11097-11104, 2010
[13] K. Isamoto et al., “A 5-V Operated MEMS Variable Optical Attenuator by SOI Bulk Micromachining,” IEEE J. Sel. Topics Quant. Electron., vol. 10, no. 3, pp. 570–578, 2004.
[14] G. D. J. Su et al., “Fabrication and Measurement of Low-Stress Polyimide Membrane for High-Resolution Variable Optical Attenuator,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 13, Issue 2, pp. 312-315, 2007.
[15] S. Menn et al., “Advances in MEMS Deformable Mirror Technology for Laser Beam Shaping,” Proc. of SPIE Vol. 6663, 2007.
[16] I. Kanno et al., “Development of Deformable Mirror Composed of Piezoelectric Thin Films for Adaptive Optics,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 13, No. 2, 2007.
[17] T. Y. Chen et al., “A MEMS-based Organic Deformable Mirror with Tunable Focal Length,” IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, pp. 103–104, 2007.
[18] http://www.bostonmicromachines.com/wavefront-sensor.htm
[19] F. Druon et al., “Wave-front correction of femtosecond terawatt lasers by deformable mirrors,” Optics Letters, Vol. 23, No. 13, 1998.
[20] F. Carpi and E. Smela, Biomedical Applications of Electroactive Polymer Actuators, John Wiley & Sons, 2009.
[21] R. P. Hamlem, C. E. Kent, and S. N. Shafer “Electrolytically Activated Contractile Polymer,” Nature, Vol. 206, p. 1149-1150, 1965.
[22] K. Oguro, “Ion-Exchange Polymer Metal Composites (IPMC) Membranes,” http://ndeaa.jpl.nasa.gov/nasa-nde/ lommas/eap/IPMC_PrepProcedure.htm
[23] M. Shahinpoor, and K. J. Kim, “The effect of surface-electrode resistance on the performance of ionic polymer–metal composite (IPMC) artificial muscles,” Smart Mater. Struct., Vol. 9, pp. 543–551, 2000.
[24] M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, “Ionic polymer–metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles—a review,” Smart Mater. Struct., Vol. 7, pp. R15–R30, 1998.
[25] C. C. Yeh and W. P. Shih, “Effects of water content on the actuation performance of ionic polymer–metal composites,” Smart Mater. Struct., Vol. 19, pp. 124007, 2010.
[26] DuPond, http://www2.dupont.com/FuelCells/en_US/assets/downloads/dfc101.pdf
[27] H. C. Wei, and G. D. J. Su, “A large-stroke deformable mirror by gear shaped IPMC design,” Proc. of the 2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 113-116, 2011.
[28] H. K. Lee et al., “Electroactive Polymer Actuator for Lens-Drive Unit in Auto-Focus Compact Camera Module,” ETRI Journal, Vol. 31, No. 6, 2009.
[29] B. L. Stoimenov, J. M. Rossitera, and T. Mukaia, “Anisotropic surface roughness enhances bending response of ionic polymer-metal composite (IPMC) artificial muscles,” Proc. SPIE Vol. 6413, Smart Materials IV, pp. 641302, 2006.
[30] M. Shahinpoor, and K.J. Kim, “Novel ionic polymer-metal composites equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles,” Sensors and Actuators A, Vol. 96, pp. 125, 2002.
[31] K. J. Kim, and M. Shahinpoor, “Ionic polymer–metal composites: II. Manufacturing techniques,” Smart Mater. Struct., Vol. 12, pp. 65–79, 2003.
[32] H. He, and J. Wang, “Effect of anisotropic membrane surface modification of Nafion based Ionic Polymer-metal Composites,” Advanced Materials Research, Vol. 311-313, pp. 2000, 2000.
[33] Y. D. Chen, “Application of Ionic Polymer Metallic Composite in Variable Optical Attenuator,” Master Thesis, National Taiwan University, 2011.
[34] C. K. Chung et al., “A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders,” Sensors and Actuators B, Vol. 117, pp. 367–375, 2006.
[35] S. J. Kim, I. T. Lee, H. Y. Lee, and Y. H. Kim, “Performance improvement of an ionic polymer–metal composite actuator by parylene thin film coating,” Smart Mater. Struct., Vol. 15, pp. 1540–1546, 2006.
[36] H. U. Yun et al., “Design of micromirror actuator by ionic polymer metal composites,” Microsyst Technol, Vol. 15, pp. 1531–1538, 2009.
[37] M. Shahinpoor, and K. J. Kim, “Effects of Counter-ions on the Performance of IPMCs,” SPIE 2000 Conf. Electroactive Polymer Actuators and Devices, Vol. 3687, pp. 110–120, 2000.
[38] H. Takenaka, E. Torikai, Y. Kawami, and N. Wakabayashi, “Solid polymer electrolyte water electrolysis,” Int. J. Hydrogen Energy, Vol. 7, No.5, pp. 397-403, 1982.
[39] P. Millet, M. Pineri, and R. Durand, “New solid polymer electrolyte composites for water electrolysis,” J. of Applied Electrochemistry, Vol. 19, pp. 162-166, 1989.
[40] S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy Formation of Gold-Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition,” J. Phys. Chem. B, Vol. 103, No. 18, pp. 3529–3533, 1999.
[41] David K. Cheng, Field and wave electromagnetics, Addison-Wesley, 1989.
[42] Ryu Kanno, Satoshi Tadokoro, Toshi Takamori, and Motofumi Hattori, “Linear Approximate Dynamic Model of ICPF (Ionic Conducting Polymer Gel Film) Actuator,” Proc. 1996 IEEE International Conference on Robotics and Automation, Vol. 1, pp.219-225, 1996.
[43] J. W. Paquette, K. J. Kim, J. D. Nam, and Y. S. Tak, “An Equivalent Circuit Model for Ionic Polymer–Metal Composites and Their Performance Improvement by a Clay-based Polymer Nano-composite Technique,” J. Intelligent Material Systems and Structures, Vol. 14, pp. 633, 2003.
[44] J. Yip et al., “Experimentally validated improvement of IPMC performance through alternation of pretreatment and electroless plating processes,” Smart Mater. Struct., Vol. 20, pp. 015009, 2011.
[45] B. Berge, “Liquid lens technology: Principle of electrowetting based lenses and applications to imaging,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 227-230.
[46] H. Ren et al., “Liquid crystal lens with large focal length tunability and low operating voltage,” Optics Express, Vol. 15, pp. 11328-11335, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63708-
dc.description.abstract離子高分子金屬複合物(IPMC)是一種當處在電場下時,會表現出彎曲行為的複合性材料。傳統上採用的IPMC製程,一般包含一個粗糙化的步驟。粗糙化可以帶來更佳的電極附著性以及更好的制動表現等優點。但是粗糙化所造成的極大的表面粗糙度同時也會在許多應用上形成阻礙,特別是在可形變鏡面應用的方面。
在這篇論文中,我們保留了粗糙化的程序,並且提出一種運用聚二甲基矽氧烷的附加性的製程去改善IPMC的表面粗糙度以及一些其他特性。經過此表面改善製程之後,IPMC的表面方均根粗糙度可以低至28 nm的程度,並且在3伏特的偏壓底下可以成功的制動。另外我們也發現經過改善後的IPMC在大氣環境下的耐用度是未改善的IPMC的約15倍。其他改善製程所帶來的影響,包括反射率、表面散射程度、電阻以及制動表現也會同時討論。最後,我們應用這種改善方法來實現一種IPMC可形變面鏡樣式設計,並量測其制動效果。
zh_TW
dc.description.abstractIonic polymer metallic composite (IPMC) is a composite material that could perform a bending deformation in an electric field produced by a small bias voltage. A necessary roughening process is generally included in the conventional IPMC fabrication. The roughening process brought several advantages, such as better adhesion and actuation performance. However, the resulted large surface roughness becomes an obstacle in some IPMC applications, especially deformable mirror.
In this thesis, we preserve the roughening process and advance an additional fabrication using polydimethylsiloxane (PDMS) to improve the surface roughness as well as other properties of IPMC. The root-mean-square surface roughness is lowered to 28 nm, and the surface-improved IPMC could be successfully actuated under a 3-volt bias voltage. We also find that the duration under atmosphere is 15 times longer than that of the non-improved IPMC. The effect of the surface-improved fabrication on reflectance, surface scattering content, resistance and actuation performance are discussed as well. At last, we adopt the surface-improved method to realize a patterned IPMC deformable mirror, and the deformation is measured.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:16:55Z (GMT). No. of bitstreams: 1
ntu-101-R98941086-1.pdf: 2987301 bytes, checksum: 217d63d71da6c71fc8160f60cfd0b0ce (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Deformable mirror 5
1.2 Ionic polymer metallic Composite 7
Chapter 2 Design 12
2.1 Challenge to Apply IPMC as Deformable Mirror 12
2.2 Design Concept 15
Chapter 3 Fabrication 17
3.1 Conventional IPMC Fabrication 17
3.2 Surface-Improved IPMC Fabrication 27
Chapter 4 Result and Discussion 30
4.1 Appearance, Surface Morphology and Structure 30
4.2 Surface Roughness 38
4.3 Optical Properties 43
4.4 Electrical Properties 51
4.5 Actuation Performance 55
4.6 Duration under Atmosphere 57
Chapter 5 Patterned IPMC Deformable Mirror 59
5.1 Patterned Deformable Mirror Design and Simulation 59
5.2 Fabrication and Measuring Method 62
5.3 Actuation Performance 65
5.4 Light-Focusing Ability 69
Chapter 6 Conclusion and Future Work 74
6.1 Conclusion 74
6.2 Future Work 76
REFERENCE 77
APPENDIX 82
dc.language.isoen
dc.subject可形變鏡面zh_TW
dc.subject聚二甲基矽氧烷zh_TW
dc.subject離子高分子金屬複合材料zh_TW
dc.subject粗糙度zh_TW
dc.subject耐用度zh_TW
dc.subjectIPMCen
dc.subjectDeformable Mirroren
dc.subjectroughnessen
dc.subjectduration.en
dc.title利用聚二甲基矽氧烷改善離子高分子金屬複合物之表面粗糙度以及其應用於可形變鏡面之研究zh_TW
dc.titleResearch of Improving the Surface Roughness of IPMC by Using PDMS and Its Application in Deformable Mirroren
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃鼎偉(Ding-Wei Huang),蔡永傑(Wing-Kit Choi)
dc.subject.keyword離子高分子金屬複合材料,聚二甲基矽氧烷,可形變鏡面,粗糙度,耐用度,zh_TW
dc.subject.keywordIPMC,Deformable Mirror,roughness,duration.,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2012-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved