請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63706完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江茂雄 | |
| dc.contributor.author | Che-Wei Chang | en |
| dc.contributor.author | 張哲瑋 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:16:52Z | - |
| dc.date.available | 2015-08-22 | |
| dc.date.copyright | 2012-08-22 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-17 | |
| dc.identifier.citation | [1] 劉淵銘, '奈米精度氣壓-壓電混合驅動之XY-Z三軸長行程定位系統設計與適應性滑動控制,' 自動化及控制研究所, 國立台灣科技大學, 2007.
[2] H. F. Schulte, 'The characteristics of the McKibben artificial pneumatic muscle,' National Academy of Sciences, Washington,DC., pp. 94-115, 1961. [3] D. G. Caldwell, G. A. Medrano-Cerda, and M. Goodwin, 'Control of pneumatic muscle actuators,' IEEE Control Syst. Mag., pp. 40-48, 1995. [4] C. P. Chou and B. Hannaford, 'Static and dynamic characteristics of McKibben pneumatic artificial muscles,' presented at the Proc. IEEE Robotics Automation Conf., 1994. [5] 吳瑞啟, '二自由度氣壓肌肉機械臂之混合控制,' 自動化及機電整合研究所, 2006. [6] C. P. Chou and B. Hannaford, 'Measurement and modeling of McKibben pneumatic artificial,' IEEE, 1994. [7] D. W. Repperger, K. R. Johnson, and C. A. Philips, 'Nonlinear feedback controller design of a pneumatic muscle actuator system,' presented at the American Control Conference, 1999. [8] G. K. Klute, Czerniecki, and H. J.M., 'McKibben artificial muscles: Pneumatic actuators with biomechanical intelligence,' presented at the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 1999. [9] P. Carbonell, Z. P. Jiang, and D. W. Repperger, 'A fuzzy backstepping controller for a pneumatic muscle actuator system,' Intelligent Control, 2001. [10] J. H. Lilly, 'Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations,' IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003. [11] A. Hildebrandt, O. Sawodny, R. Neumann, and A. Hartmann, 'A flatness based design for tracking control of pneumatic muscle actuators,' Automation, Robotics and Vision, 2002. [12] S. Davis, D. G. Caldwell, N. Tsagarakis, and J. Canderle, 'Enhanced modelling and performance in braided pneumatic muscle actuators,' International Journal of Robotics Research, 2003. [13] D. G. Caldwell, G. A. Medrano-Cerda, and M. J. Goodwin, 'Braided pneumatic actuator control of a multi-jointed manipulator,' Man and Cybernetics, 1993. [14] B. Tondu and P. Lopez, 'Modeling and control of McKibben artificial muscle robot actuators,' IEEE Control Systems Magazine, 2000. [15] Liang and J. H. Lilly, 'A two-input sliding-mode controller for a planar arm actuated by four pneumatic muscle groups,' Neural Systems and Rehabilitation Engineering, IEEE, 2004. [16] G.-Y. Lin, 'Development of Tracking Control of a Single Robot Arm with Pneumatic Muscle Actuator,' Department of Engineering Science and Ocean Engineernig, National Taiwan University, 2008. [17] X. Shen, 'Nonlinearmodel-based control of pneumatic artificial muscle servo systems,' Control Engineering Practice, 2010. [18] T. V. Minh, B. Kamers, T. Tjahjowidodo, H. Ramon, and H. V. Brussel, 'Modeling Torque-Angle Hysteresis in A Pneumatic Muscle Manipulator,' presented at the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Canada, 2010. [19] V. I. Utkin, 'Survey Paper Variable Structure Systems with Sliding Modes,' IEEE Transactions on Automatic Control, 1977. [20] J. Y. Hung, W. Gao, and J. C. Hung, 'Variable structure control: a survey,' Industrial Electronics, IEEE Transactions on Mechatronics, vol. 40, pp. 2-22, 1993. [21] J.-J. E. Slotine and W. Li, 'Applied Nonlinear Control,' Prentice Hall, 1991. [22] J.-J. E. Slotine, 'Sliding controller design for non-linear systems,' International Journal of Control, vol. 40, pp. 421-434, 1984. [23] A. C. Huang and Y. C. Chen, 'Adaptive Sliding Control for Single-Link Flexible-Joint Robot with Mismatched Uncertainties,' IEEE Transactions on Control Systems Technology, vol. 12, pp. 770-775, 2004. [24] A. C. Huang and Y. C. Chen, 'Adaptive Multiple-Surface Sliding Control for Non-Autonomous Systems with Mismatched Uncertainties,' Automatica, vol. 40, pp. 1939-1945, 2004. [25] P. C. Chen and A. C. Huang, 'Adaptive Sliding Control of Active Suspension Systems with Uncertain Hydraulic Actuator Dynamics,' Vehicle System Dynamics, vol. 44, pp. 357-368, 2006. [26] FESTO, Datasheet of DMSP-20-250N type Fluidic Muscle. [27] 李寶仁, 劉軍, and 楊鋼, '氣動人工肌肉建模與仿真,' 中國機械工程學報, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63706 | - |
| dc.description.abstract | 本論文旨在研究氣壓肌肉致動器在氣壓伺服控制系統上的應用,為了解氣壓肌肉 致動器的特性,首先設計單軸之雙氣壓肌肉致動器的實驗系統,進行位置軌跡定位及軌跡追蹤的模擬及實驗。再進一步,建立兩組左右各一對氣壓肌肉致動器驅動的封閉式平行機構機械臂實驗系統,機構設計上用兩根氣壓肌肉致動器,構成一個轉動關節,經由一個收縮,另一個伸長所產生的長度變化及收縮力變化,使機械臂的上擺臂關節轉動藉以帶動下擺臂末端端點之位移,並透過控制左右角度來進行端點的位置定位控制。
在控制器設計上,先將兩系統的數學模型降階簡化為三階的非線性時變系統,且滿足匹配條件並以函數近似法為基礎之適應性滑動模式控制之軌跡控制,採用函數近似法近似系統數學模型可,處理原本難以鑑別出的系統不確定之變數及參數時變問題。此外,本文以軌跡定位的方式進行定位控制,同時兼顧暫態及穩態之特性以避免類似步階響應時所產生的震盪與超越量。 本文先以電腦模擬驗證控制器可行性,最後以實驗實現,包含單軸之雙氣壓肌肉致動器系統軌跡追蹤控制,封閉式平行雙氣壓肌肉致動器驅動機械臂系統角度與端點之定位及軌跡追蹤控制,並得到良好的追蹤結果。 | zh_TW |
| dc.description.abstract | This study aims to investigate the pneumatic muscle actuators (PMA) applied in the pneumatic servo system. In order to figure out the characteristics of PMA, we first design a single-axial PMA system with two PMAs for path-tracking control. Finally, a dual-axial PMAs parallel robotic arm is developed for rotational angle control and end-point path-position control. The rotation of joint is driven by dual PMAs, which means one is in extension another is in contraction. By controlling these two angles, we can control the terminal point position of the robot arm.
In order to control these systems, Fourier series-based adaptive sliding mode controller is used to control the PMAs through the pressure servo valves. For ensuring the smooth motion, the path-position control is chosen to give consideration to transient and steady state response. The simulation and experiment for path-tracking control of single-axial PMAs system and the dual-axial PMAs robotic arm are executed and show that the system can have good tracking performance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:16:52Z (GMT). No. of bitstreams: 1 ntu-101-R99525037-1.pdf: 2957985 bytes, checksum: 41a7acf1e90a54042494117cd91deff6 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract III Content IV List of Table 4 Chapter 1 Introduction 5 1.1 Preface 5 1.2 Literature Survey 6 1.2.1 Pneumatic muscle actuator 6 1.2.2 Control theory 7 1.3 Motivation of the Thesis 8 1.4 Organization of the Thesis 8 Chapter 2 Layout of Test Rig of PMAs System 10 2.1 Test Rig of Single-axial PMAs System 10 2.2 Test Rig Layout of Dual-axial PMAs Robotic System 13 2.3 Characteristics test of PMA 17 Chapter 3 Mathematical Models of PMAs System 19 3.1 Mathematical Models of Single-axial PMAs System 19 3.2 Mathematical Models of Dual-axial PMAs Robot System 23 3.3 Forward Kinematics Analysis of Dual-axial PMAs Robot System 25 3.4 Inverse Kinematics Analysis of Dual-axial PMAs Robot System 27 Chapter 4 Controller Design 30 4.1 Functional Approximation with Fourier Series 30 4.2 Theory of Fourier Series-based Adaptive Sliding-mode Controller 31 4.3 Controller Design 35 4.3.1 Single-axial PMAs system 35 4.3.2 Dual-axial PMAs system 38 Chapter 5 Simulations and Experiments 42 5.1 Simulations and Experiments for Single-axial PMAs System 44 5.1.1 Simulation for single-axial PMAs system 44 5.1.2 Experiment for single-axial PMAs system with path-tracking control 47 5.1.3 Experiment for single-axial PMAs system with sinusoidal path-tracking control 52 5.1.4 Comparison of experimental results for path-tracking control and sinusoidal path-tracking control of single-axial PMAs system 55 5.2 Simulations and Experiments for Dual-axial PMAs System 58 5.2.1 Simulation for dual-axial PMAs system 58 5.2.2 Experiment for dual-axial PMAs system with path-tracking control and angular velocity-tracking control 61 5.2.3 Experiment for dual-axial PMAs system with sinusoidal path-tracking control 68 5.2.4 Comparison of experimental results for path-tracking control, angular velocity-tracking control and sinusoidal path-tracking control of dual-axial PMAs system 71 5.2.5 Experiment for dual-axial PMAs system with specific path-tracking control 76 Chapter 6 Conclusions 82 References 83 | |
| dc.language.iso | en | |
| dc.subject | 氣壓伺服系統 | zh_TW |
| dc.subject | 氣壓肌肉致動器 | zh_TW |
| dc.subject | 封閉式機械臂 | zh_TW |
| dc.subject | 函數近似法 | zh_TW |
| dc.subject | 適應性滑動模式之軌跡控制 | zh_TW |
| dc.subject | adaptive sliding mode controller | en |
| dc.subject | pneumatic muscle actuator | en |
| dc.subject | robot arm | en |
| dc.subject | Fourier series-based | en |
| dc.subject | pneumatic servo system | en |
| dc.title | 氣壓肌肉致動雙軸封閉式平行機構機械臂之設計及控制 | zh_TW |
| dc.title | Design and Control of a Dual-axial Parallel Robotic Arm Driven by Pneumatic Muscle Actuators | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭文化,黃金川,郭振華 | |
| dc.subject.keyword | 氣壓伺服系統,氣壓肌肉致動器,封閉式機械臂,函數近似法,適應性滑動模式之軌跡控制, | zh_TW |
| dc.subject.keyword | pneumatic servo system,pneumatic muscle actuator,robot arm,Fourier series-based,adaptive sliding mode controller, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
