Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63699
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱文英
dc.contributor.authorWen-Ju Chuangen
dc.contributor.author莊文如zh_TW
dc.date.accessioned2021-06-16T17:16:41Z-
dc.date.available2014-08-22
dc.date.copyright2012-08-22
dc.date.issued2012
dc.date.submitted2012-08-18
dc.identifier.citation1. Schild H. G. Prog, Polym. Sci. 1992 ,17, 163
2. Feil H., Bae Y.H., Feijen J. , Kim S.W., Macromolecules 1993, 26, 2496.
3. Bradley M., Ramos J., Vincent B., Langmuir 2005, 21,1209.
4. Murray M.J., Snowden M., Adv. Colloid Interface Sci. 1995,54, 73.
5. Hoffman A. S., J. Controlled Release, 1987, 6, 297.
6. Duracher, A. Elaissari, F. Mallet, C. Pichot, Langmuir, 2000, 16, 9002.
7. Kondo, T. Kaneko, K. Higashitani, Biotechnol. Bioeng., 1994,44, 1.
8. Song, C. Pan, J. Li, R. Zhang, X. Wang, Z. Gu, Talanta, 2008,75, 1035.
9. Fang X, Reneker DH. J Macromolecular Sci-Phys 1997,B36,169.
10. Taylor G. I. Electrically driven jets. Proc R Soc London, Ser A 1969,313,453.
11. Huang Z. M., Zhang Y. Z., Kotaki M.,Ramakrishna S., Composites Science and Technology 2003, 63 ,2223.
12. Doshi J, Reneker D.H., J Electrostatics 1995,35(2-3),151.
13. Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH. Polymer 2005,46, 5094.
14. Jun Z., Hou H., Schaper A., Wendorff J.H., Greiner A.,e-Polym, 2003, 9, 1.
15 Deitzel J. M. , Kleinmeyer J. , Harris D., Tan N. C. B., Polymer 2001, 42, 261.
16. Hohman M. M. , Shin M., Rutledge G., Brenner M. P., Phys Fluids 2001,13,2221.
17. Haque M. A., Saif M. T. A., Exp Mech, 2003, 43, 248.
18. Yuan X. Y., Zhang Y. Y. , Dong C. H. , Sheng J., Polym Int, 2004, 53, 1704.
19. Mit-uppatham C., Nithitanakul M., Supaphol P. , Macromol Chem Phys, 2004, 205, 2327.
20. Casper C. L., Stephens J. S., Tassi N.G., Chase D.B., Rabolt J.F.,Macromolecules, 2004,37,573.
21. Li D., Wang Y., Xia Y., Adv Mater, 2004,16,361.
22. Mrozowski S., Carbon, 1997, 9, 97
23. Strumpler R., Glatz-Reichenbach, J Electroceram, 1999, 3(4), 329.
24. Bar H., Narkis M., Boiteux G., Polym Compos., 2005, 26(1), 12.
25. Yui H., Wu G. Z. , Sano H., Sumita M., Kino K., Polymer, 2006,47(10),3599.
26. Huang J. C., Adv Polym Technol, 2002, 21(4), 299.
27. Kandasubramanian B., Gilbert M., Macromol Symp, 2005, 221, 185.
28. Meyer J., Polyin. Eng. Sci., 1974, 14, 10.
29. Kohler F., U.S. Patent 3,243,753. (March 29, 1966).
30. Ohe K. and Natio Y., Jap. J . Appl. Phys.,1971, 10, 99.
31. Meyer J., Polyin. Eng. Sci., 1973, 13, 462.
32. Heskins M., Guillet J. E, J. Macromol. SC1-Chem. 1968 ,A2(8),1441.
33. Francis R., Jiji C.P., Prabhu C.A., Suresh C.H., Polymer, 2007, 48, 6707.
34. Caykara T., Kiper S., Demirel G., Eur. Polym. J., 2006, 42, 348.
35. Rzaev Z.M.O., Dincer S., Pis-kin E., Prog. Polym. Sci., 2007, 32, 534.
36. Yoo M.L., Sung Y.K, , Lee Y.M., Cho C.S, Polymer, 2000,41, 5713.
37. Pacios I E, Pierola I F, J Appl Polym. Sci., 2009,112(3),1579.
38. Xue W., Champ S., Huglin M. B., Polymer , 2001, 42, 3665.
39. Holtz J.H., Holtz J.S.W., Munro C.H., Asher S.A., Anal. Chem., 1998, 70(4) , 780.
40. Don T.M., Huang M.L., Chiu A.C., Kuo K.H., Chiu W.Y., Chiu L.H., Mater. Chem. Phys., 2008,107, 266.
41. Lin C.L., Chiu W.Y., Lee C.F., J. Colloid Interface Sci.,2005, 290, 397.
42. Champ S., Xue W, Huglin M.B., Polymer, 2001, 42, 6439.
43. Lyons R D., Med J Australia, 1985, 142(9), 519.
44. Volfova P., Chrastova V., Cernakova L., Mrenica J., Kozankova J., Macromol Symp, 2001,170, 283.
45. Kuckling D., Harmon M.E., Frank C.W., Macromolecules, 2002, 35, 6377.
46. Tillet G., Boutevin B., Ameduri B., Prog. Polym. Sci., 2011, 36, 191.
47. Huglin M B, Radwan M A., Polymer , 1991, 32(18), 3381.
48. Yin H.E., Lee C.F., Chiu W.Y., Polymer 2011, 52(22), 5065.
49.Krishnan S., Klein A., El-Aasser M.S., Sudol E., Macromolecules, 2003, 36, 3511.
50. Yocum R. H., Nyquist E. B., Functional Monomers, Marcel Dekker, New York, 1973.
51. Heskins M., Guillet J. E., J. Macromol. SC1-Chem.,1968,A2(8),1441.
52. Winnik F.M., Ringsdorf H, Venzmer J. Macromolecules, 1990,23, 2415.
53. Katsumoto Y. ,Tanaka T. Ihara K., Koyama M. Ozaki Y. J. Phys. Chem. B, 2007, 111,12730.
54. Holtz J.H., Holtz J.S.W., Munro C.H., Asher S.A. Anal. Chem.,1998,70(4),780.
55. Don T.M., Huang M.L., Chiu A.C., Kuo K.H., Chiu W.Y., Chiu L.H. Mater. Chem. Phys., 2008, 107, 266.
56. Champ S., Xue W., Huglin MB. Polymer, 2001, 42, 6439.
57. Lyons R D. Med J Australia, 1985,142(9), 519.
58. Volfova P., Chrastova V., Cernakova L., Mrenica J., Kozankova J. Macromol Symp, 2001,170, 283.
59. Kuckling D., Harmon M.E., Frank C.W. Macromolecules, 2002,35, 6377.
60. Tillet G., Boutevin B., Ameduri B., Prog. Polym. Sci. 2011, 36, 191.
61. Huglin M B, Radwan M A. Polymer, 1991,32(18), 3381.
62. Yocum R H, Nyquist E B. Functional Monomers: Marcel Dekker, New York, 1973.
63. Bhardwaj N., Kundu S.C., Biotechnology Advances 2010,28, 325.
64. Zhanga Y., YarinA.L. J. Mater. Chem. , 2009, 19, 4732.
65. Sill T. J., Recum H. A. Biomaterials , 2008,29, 1989.
66. Rockwwod D.N., Chase D.B., Akins R.E., Rabolt J. J. F. Polymer, 2008, 49,4025.
67. Wang N., Zhao Y., Jiang L. Macromol. Rapid Commun. 2008, 29, 485.
68. Okuzaki H., Kobayashi K., Yan H. Macromolecules 2009, 42, 5916.
69. Zhang Y., Yarin AL.J. Mater. Chem., 2009, 19, 4732.
70. Fong H., Chun I., Reneker DH. Polymer 1999, 40, 4585.
71. Heskins M., Guillet J. E., J. Macromol. SC1-Chem, 1968, A2(8), 1441.
72. Huglin M. B., Radwan M. A., Polymer, 1991, 32(18), 3381.
73. Yocum R H, Nyquist E B. Functional Monomers: Marcel Dekker, New York, 1973.
74. Zhang W., Dehghani-Sanij A.A., Blackburn R.S., J Mater Sci, 2007; 42(10), 3408.
75. Dharaiya D.P., Jana S.C., Lyuksyutov S.F., Polym Eng Sci, 2005, 46(1), 19.
76. Frydman E., UK patent 604,695,1945.
77. Kohler F., US Patent 3,243,753, 1966.
78. Mayer J., Polym. Eng. Sci., 1974,14,706.
79. Klason C., Kubat J., J Appl Polym Sci, 1975, 19, 831.
80. Ohe K., Natio Y., Jpn J Appl Phys, 1971, 10, 99.
81. Zhang C., Ma C.A., Wang P., Sumitac M., Carbon, 2005, 43, 2544.
82. Jakab E., Omastova M., J. Anal. Appl. Pyrolysis, 2005, 74, 204.
83. Cheng J., Wang L., Huo J., Yu H.J., Yang Q., Deng L., J. Polym. Sci., Part B: Polym. Phys., 2008, 46, 1529.
84. Hamon M.A., Chen J., Hu H., Chen Y., Itkis M. E., Rao A. M., Eklaund P. C., Haddon R. C., Adv. Mater. ,1999, 11, 834.
85. Sano M., Kamino A., Okamura J., Shinkai S., Langmuir, 2001, 17, 5125.
86. Zhang W. Deehghani. S. AA. Blackburn R.S. J. Mater. Sci, 42(10), 2007,3408.
87. Shang S.M., Zeng W., Tao X.M, J. Mater. Chem. 2011, 21,7274.
88. Dharaiya D.P., JanaS.C., Lyuksyutov S.F., Polym. Eng. Sci. ,2005, 46(1),19.
89. Schiffman J.D., Blackford A.C., Wegst U.G.K., Schauer C.L. ,2011,84, 1252
90. Chen S.G., Hu J.W., Zhang M.Q. Li M.W., and Rong M.Z.,2004, Carbon, 42(3), 645.
91. Chuaangchote S., Sirivat A., Supaphol P., Nanotechnology, 2007, 18(14), 145705.
92. Hwang J., Muth J., Ghosh T., Journal of Applied Polymer Science , 2007, 104(4) 2410.
93. Heskins M.,Guillet J.E. , J. Macromol. SC1-Chem, 1968, A2(8), 1441.
94. Pedicini A., Farros R. J., Journal of Polymer Science, Part B: Polymer Physics, 2004, 42(5),752.
95. Li, D., Sun. G., Dyes and pigments, 2007, 72(2), 144.
96. Balberg, I , Carbon,2002, 40(2), 139.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63699-
dc.description.abstract本研究目的在於製備以具溫感性、熱可交聯性聚(異丙基丙烯醯胺)共聚物及其導電碳黑複合材料,並探討其在膠體以及奈米纖維不同型態下的性質及應用。
論文內容共分為兩大部分。第一部份包含第二、三章。第二章中探討具溫感性、熱可交聯性聚(異丙基丙烯醯胺)共聚物的製備與溫度感應性質以及共聚物水膠特性。使用熱可交聯性單體N-(methylol acrylamide) (NMA) 與N-isopropylacrylamide (NIPAAm) 在水中溶液藉由自由基反應聚合反應合成熱可交聯性poly(NIPAAm-co-NMA)共聚物,並施以不同的熱交聯時間與交聯溫度。在本研究中探討含不同NMA比例以及不同交聯條件之poly(NIPAAm-co-NMA)共聚物,其交聯程度(Gel fraction)、膨潤程度(Swelling ratio)以及低臨界相轉變溫度(Lower Critical Solution Temperature, LCST) 等性質。結果顯示少量的NMA熱可交聯型單體引入,即可使poly(NIPAAm-co-NMA)交聯,而NMA含量以及交聯的程度,對共聚物水膠的特性有顯著的影響。第三章主要製備Poly(NIPAAm-co-NMA)的奈米纖維以及探討在奈米纖維型態下此共聚物的特性。應用靜電紡絲的方式將poly(NIPAAm-co-NMA)共聚物在水以及甲醇中進行靜電紡,探討不同的溶劑特性,溶劑濃度,以及靜電紡參數對共聚物靜電紡絲型態上的影響。另外比較在水膠狀態以及在奈米纖維型態下的poly(NIPAAm-co-NMA)共聚物其性質的差異。
第¬二部份包含第四、五章,探討導電碳黑複合材料的特性。第四章中藉由在poly(NIPAAm-co-NMA)中引入酸化後的碳黑來製備具有溫度感應性的導電薄膜,結果顯示該導電薄膜除了外在溫度以及含水量會影響表面阻抗之外,當溫度高於低臨界相轉變溫度之後會有明顯的表面阻抗下降,另外,該薄膜也具有可逆性的溫度感應特性。
第五章則利用靜電紡絲製程製備溫度感應性之導電性奈米纖維,並探討在不同的碳黑比例下該溫感導電型複合材料的型態,交聯後的奈米纖維可以在水中保持穩定的特性與型態。在電紡纖維型態下,僅需要較低的碳黑比例就可以達到與薄膜型態相同的導電度,並且奈米導電纖維對於溫度與濕度的反應靈敏度也比薄膜型態高。
本研究之原創性及成果貢獻在於:
1.首次在異丙基丙烯醯胺(NIPAAm)中利用引入熱可交聯性單體進行共聚合反應,
並且藉由熱可交聯性單體的比例以及熱交聯條件,控制該共聚合物的溫度感應
性、澎潤性、以及交聯度。
2.利用靜電紡絲技術製備poly(NIPAAm-co-NMA)奈米纖維,並藉由該共聚物熱可交聯的特性,使該奈米纖維經過熱交聯後,可以維持共聚物奈米纖維的型態以及其特性。
3.利用Poly(NIPAAm-co-NMA)的溫度感應性,成功製備具溫度及濕度感應性之導電性複合薄膜以及奈米纖維。經過熱交聯後的該複合材料以及纖維,可以使碳黑粒子穩定地存在共聚物薄膜及奈米纖維中。
zh_TW
dc.description.abstractIn this study, the thermo-responsive and thermal crosslinkable poly(N-isopropylacrylamide-co-N-methylol acrylamide), poly(NIPAAm-co-NMA), copolymer and its conductive composites of poly(NIPAAm-co-NMA) with carbon black in the morphologies of films, hydrogels or nanofibers were prepared.
There are two parts in this research. The first one includes Chapter 2 and Chapter 3. In Chapter 2, it shows the preparation and characteristics of the thermo-responsive and thermal crosslinkable oly(NIPAAm-co-NMA) and the properties of hydrogels for the copolymers. Poly(NIPAAm-co-NMA) was copolymerized by thermally curable monomer N-(methylol acrylamide) (NMA) and N-isopropylacrylamide in water by initiators and then applied various curing time or temperature for thermal curing. The properties of gel fraction, swelling ratio, and lower critical solution temperature (LCST) were evaluated for the ratio of NMA and the curing conditions of the poly(NIPAAm-co-NMA) copolymers. The results showed the copolymer could be cured at low NMA ratio. The introduction of a crosslinking structure,NMA, into the temperature-responsive polyNIPAAm controlled the swelling capability and the properties of the crosslinked hydrogels.
In Chapter 3, thermo-responsive nanofibers were successfully prepared via electrospinning. Poly(NIPAAm-co-NMA) in methanol or water was used as the solution for preparing the electrospinning nanofibers. Thermal curing process was then applied on the copolymer nanofibers for thermal crosslinking and the crosslinked nanofibers could keep the fiber morphology and the copolymer characters while soaking in water. The properties of the copolymers in the morphologyof hydrogel or nanofibers were further investigated.
The second part includes Chapter 4 and Chapter 5, in which the properties of conductive composites with carbon black were studied. The acid-treatment carbon black was introduced into poly(NIPAAm-co-NMA) in Chapter 4 to prepare the temperature-dependent conductive films. It was found that the surface resistance of the conductive films not simply affected by the amount of water content, but also appeared significant drop when the temperature was higher than the LCST. It is noted that the poly(NIPAAm-co-NMA)/CB composites exhibited both temperature-dependent electric resistance and reproducible thermal-responsive characteristics.
In Chapter 5 the temperature-dependent conductive composite nanofibers were prepared by electrospinning. The morphologies of the nanofibers with different carbon black loading were evaluated and the crosslinked nanofibers were with good stability in water. The composites in nanofibers showed the lower percolation ratio and higher surface resistance response rate than the copolymer in films.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:16:41Z (GMT). No. of bitstreams: 1
ntu-101-D92549005-1.pdf: 14561444 bytes, checksum: ed811ce0149c28d07d575766d79aeee1 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 ii
摘要 iii
Abstract v
Contents viii
List of Tables xii
List of Scheme xiii
List of Figures xiv
Chapter 1 Introduction 1
1-1 Introduction 1
1-2 Stimuli-responsive material : Poly(N-isopropylacrylamide) 3
1-3 Electrospinning 7
1-4 Conductive carbon black and the thermal conductivity of polymer filled with carbon material 13
1-5 Motivation and structure of this research 19
Chapter 2 Thermally Crosslinkable Poly(N-isopropylacrylamide) Copolymers: Synthesis and Characterization of Temperature Responsive Hydrogel 22
2-1 Introduction 23
2-2 Experimental 28
2-2.1 Materials 28
2-2.2 Synthesis of Poly(NIPAAm-co-NMA) 28
2.2.3 Thermal Crosslinking of Poly(NIPAAm-co-NMA) 29
2-2.4 Characterization of Poly(NIPAAm-co-NMA) 30
2-2.5 Determination of Cloud Points 31
2-2.6 Gel Fraction and Swelling Ratio 31
2-3 Results and Discussion 33
2-3.1 The Characters of Poly(NIPAAm-co-NMA) 33
2.3.2. The thermally responsive properties of Poly(NIPAAm-co-NMA) solutions 37
2-3.3 Thermal Crosslinking 39
2-4 Conclusions 48
Chapter 3 Thermo-responsive nanofibers prepared from poly(N-isopropylacrylamide-co- N-methylol acrylamide) 49
3-1 Introduction 50
3-2 Experimental 55
3-2.1 Materials 55
3-2.2 Synthesis of Poly(NIPAAm-co-NMA) 55
3-2.3 Electrospinning 56
3-2.4 Thermal crosslinking for Poly(NIPAAm-co-NMA) 57
3-2.5 Characterization of Poly(NIPAAm-co-NMA) 57
3-2.6 LCST Measurements. 58
3-2.7 Gel Fraction and Swelling Ratio 58
3-2.8 Scanning Electron Microscopy. 59
3.3 Result and Discussion 60
3.3.1 The characters of poly(NIPAAm-co-NMA) 60
3-3.2. The formation and morphology of poly(NIPAAm-co-NMA) nanofibers 62
3-3.3 The thermal crosslinking of poly(NIPAAm-co-NMA) nanofibers 68
3-4 Conclusions 82
Chapter 4 Temperature-Dependent Conductive Composites: Poly(N-isopropylacrylamide -co- N-methylol acrylamide) and Carbon Black Composite Films 83
4-1 Introduction 85
4-2 Experimental Section 90
4-3 Results and Discussion 97
4-3.1 Characterization of poly(NIPAAm-co-NMA) and acid-treated carbon black (CB) 97
4-3.2 Characterization of polymer/CB composite 98
4-3.3 Electrical resistance and temperature-dependent resistance 102
4-3.4 Morphology of poly(NIPAAm-co-NMA)/CB composites 111
4-4 Conclusions 115
Chapter 5 Thermo-Responsive Conductive Electrospun Nanofibers prepared from poly(N-isopropylacrylamide-co- N-methylol acrylamide) and Carbon Black Composites 116
5-1 Introduction 118
5.2 Experimental 121
5.2.1 Materials 121
5.2.2 Synthesis of Poly(NIPAAm-co-NMA) 121
5.2.3 Electrospinning 122
5.2.4 Thermal crosslinking for Poly(NIPAAm-co-NMA)/CB electrospun fibers 123
5.2.5 LCST Measurements. 123
5.2.6 Swelling Ratio 124
5.2.7 Scanning Electron Microscopy and Transmission Electron Microscopy 124
5.2.8 Surface resistance of the composite nanofibers. 125
5-3 Result and discussion 127
5-3.1 Characteristics of poly(NIPAAm-co-NMA)/CB solutions 127
5-3.2 Characteristics of poly(NIPAAm-co-NMA)/CB electrospun fibers 127
5-3.3 LCST of the poly(NIPAAm-co-NMA)/CB composite fibers 135
5-3.4 Electrical resistance and its temperature dependence 137
5-4 Conclusions 145
Chapter 6 Conclusion 146
Chapter 7 Suggestion of Future Work 149
Reference 150
Appendix A: Stimuli-Responsive Polymer Nanofiber with ZnO Nanoparticles 155
A-1 Introduction 155
A-2 Experimental 157
A-3 Results and Discussion 159
A-4 Conclusion 161
Appendix B: Stimuli-Responsive and pH Sensitive Composite : Poly(N-isopropylacrylamide-co-Allylamine) / Poly(N-isopropylacrylamide-co-Allylamine-co-NMA) and Carbon Black Composites 164
List of publications 172
dc.language.isoen
dc.subject聚異丙基丙烯醯胺zh_TW
dc.subject熱可交聯zh_TW
dc.subject導電碳黑zh_TW
dc.subject複合材料zh_TW
dc.subject靜電紡絲zh_TW
dc.subject奈米纖維zh_TW
dc.subjectnanofibersen
dc.subjectpoly(N-isopropylacrylamide-co-N-methylol acrylamide)en
dc.subjectthermal crosslinkableen
dc.subjectthermo-responsiveen
dc.subjectconductive carbon blacken
dc.subjectcompositeen
dc.subjecttemperature-dependence conductiveen
dc.subjectelectrospinningen
dc.title"具溫感性、熱可交聯性聚(異丙基丙烯醯胺)共聚物及其導電碳黑複合材料之製備,靜電紡纖維,性質與形態分析"zh_TW
dc.titleThermo-responsive and Thermally Curable Poly(N-isopropylacrylamide) Copolymers and their Carbon Black Conductive Composites: Preparation, Electrospun Nanofibers, Characterization, and Morphologyen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee王紀,林正一,謝育材,陳文章,童世煌
dc.subject.keyword聚異丙基丙烯醯胺,熱可交聯,導電碳黑,複合材料,靜電紡絲,奈米纖維,zh_TW
dc.subject.keywordpoly(N-isopropylacrylamide-co-N-methylol acrylamide),thermal crosslinkable,thermo-responsive,conductive carbon black,composite,temperature-dependence conductive,electrospinning,nanofibers,en
dc.relation.page173
dc.rights.note有償授權
dc.date.accepted2012-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
14.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved