Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63670
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王淑珍(Shu-Jen Wang)
dc.contributor.authorHsiang-Wen Chenen
dc.contributor.author陳薌雯zh_TW
dc.date.accessioned2021-06-16T17:16:04Z-
dc.date.available2013-08-20
dc.date.copyright2012-08-20
dc.date.issued2012
dc.date.submitted2012-08-17
dc.identifier.citationAgrawal G.K., Rakwal R., Jwa N.S., Han K.S., Agrawal V.P. (2002) Molecular cloning and mRNA expression analysis of the first rice jasmonate biosynthetic pathway gene allene oxide synthase. Plant Physiology and Biochemistry 40:771-782.
Basu D., Dehesh K., Schneider-Poetsch H.J., Harrington S.E., McCouch S.R., Quail P.H. (2000) Rice PHYC gene: structure, expression, map position and evolution. Plant Molecular Biology 44:27-42.
Bleecker A.B., Kende H. (2000) Ethylene: A gaseous signal molecule in plants. Annual Review of Cell and Developmental Biology 16:1-18.
Brauner L. (1954) Tropisms and nastic movements. Annual Review of Plant Physiology and Plant Molecular Biology 5:163-182.
Buda A., Zawadzki T., Krupa M., Stolarz M., Okulski W. (2003) Daily and infradian rhythms of circumnutation intensity in Helianthus annuus. Physiologia Plantarum 119:582-589.
Buer C.S., Wasteneys G.O., Masle J. (2003) Ethylene modulates root-wave responses in Arabidopsis. Plant Physiology 132:1085-1096.
Caspar T., Pickard B.G. (1989) Gravitropism in a starchless mutant of Arabidopsis - implications for the starch-statolith theory of gravity sensing. Planta 177:185-197.
Chen Y.H., Kao C.H. (2012) Calcium is involved in nitric oxide- and auxin-induced lateral root formation in rice. Protoplasma 249:187-195.
Chen Y.N., Fan X.R., Song W.J., Zhang Y.L., Xu G.H. (2012) Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnology Journal 10:139-149.
Christie J.M. (2007) Phototropin blue-light receptors. Annual Review Plant Biology 58:21-45.
Correa-Aragunde N., Graziano M., Lamattina L. (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900-905.
Craker L.E., Abeles F.B., Shropshi.W. (1973) Light-induced ethylene production in sorghum. Plant Physiology 51:1082-1083.
Creus C.M., Graziano M., Casanovas E.M., Pereyra M.A., Simontacchi M., Puntarulo S., Barassi C.A., Lamattina L. (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297-303.
Darwin C D.F. (1880) The power of movement in plants London: John Murray.
Delledonne M. (2005) NO news is good news for plants. Current Opinion in Plant Biology 8:390-396.
Eliasson L., Bollmark M. (1988) Ethylene as a possible mediator of light-induced inhibition of root-growth. Physiologia Plantarum 72:605-609.
Feraru E., Friml J. (2008) PIN polar targeting. Plant Physiology 147:1553-1559.
Fernandez-Marcos M., Sanz L., Lewis D.R., Muday G.K., Lorenzo O. (2011) Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proceedings of the National Academy of Sciences of the United States of America 108:18506-11.
Folta K.M. (2004) Green light stimulates early stem elongation, antagonizing light-mediated growth inhibition. Plant Physiology 135:1407-16.
Franklin K.A., Davis S.J., Stoddart W.M., Vierstra R.D., Whitelam G.C. (2003) Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis. Plant Cell 15:1981-9.
Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., Offringa R., Jurgens G. (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147-153.
Fukaki H., Tasaka M. (1999) Gravity perception and gravitropic response of inflorescence stems in Arabidopsis thaliana. Life Sciences: Microgravity Research 24:763-770.
Guo K., Kong W.W., Yang Z.M. (2009) Carbon monoxide promotes root hair development in tomato. Plant Cell and Environment 32:1033-1045.
Hayashi Y., Nishiyama H., Tanoi K., Ohya T., Nihei N., Tanioka K., Nakanishi T.M. (2004) An aluminum influence on root circumnutation in dark revealed by a new super-HARP (high-gain avalanche rushing amorphous photoconductor) camera. Plant and Cell Physiology 45:501-501.
Hodick D., Sievers A. (1989) On the mechanism of trap closure of venus flytrap (Dionaea muscipula Ellis). Planta 179:32-42.
Hoffmann M., Hentrich M., Pollmann S. (2011) Auxin-oxylipin crosstalk: relationship of antagonists. J Integrative Plant Biology 53:429-45.
Israelss D., Johnsson A. (1967) A theory for circummutations in Helianthus Annuus. Physiologia Plantarum 20:957.
Jain M., Sharma P., Tyagi S.B., Tyagi A.K., Khurana J.P. (2007) Light regulation and differential tissue-specific expression of phototropin homologues from rice (Oryza sativa ssp. indica). Plant Science 172:164-171.
Jiao Y.L., Lau O.S., Deng X.W. (2007) Light-regulated transcriptional networks in higher plants. Nature Reviews Genetics 8:217-230.
Johnsson A., Heathcote D. (1973) Experimental evidence and models on circumnutations. Z Pflanzenphysiol 70:371-405.
JW. H. (1990) Plant tropisms and other growth movements, 1st edn. London: Unwin Hyman.
Kao C.H., Yang S.F. (1982) Light inhibition of the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in leaves is mediated through carbon-dioxide. Planta 155:261-266.
Kimura M., Kagawa T. (2006) Phototropin and light-signaling in phototropism. Current Opinion in Plant Biology 9:503-508.
Kiss J.Z., Correll M.J., Mullen J.L., Hangarter R.P., Edelmann R.E. (2003) Root phototropism: how light and gravity interact in shaping plant form. Gravity Space Biology Bulletin 16:55-60.
Lamattina L., Correa-Aragunde N., Garcia-Mata C., Graziano M., Lanteri L., Laxalt A., Pagnussat G., Ten-Have A. (2004) Nitric oxide is required as intermediate in hormone signalling pathways that trigger root organogenesis and stomatal closure in higher plants. Free Radical Biology and Medicine 36:S42-S42.
Laxmi A., Pan J.W., Morsy M., Chen R.J. (2008) Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis thaliana. PLoS ONE 2008; 3(1): e1510.
Le J., Vandenbussche F., Van Der Straeten D., Verbelen J.P. (2001) In the early response of Arabidopsis roots to ethylene, cell elongation is up- and down-regulated and uncoupled from differentiation. Plant Physiol 125:519-22.
Lee K.H., Larue T.A. (1992) Ethylene as a possible mediator of light-induced and nitrate-induced inhibition of nodulation of Pisum sativum L. cv. Sparkle. Plant Physiology 100:1334-1338.
Leshem Y.Y., Wills R.B.H., Ku V.V.V. (1998) Evidence for the function of the free radical gas - nitric oxide (NO center dot) - as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiology and Biochemistry 36:825-833.
Lewis D.R., Miller N.D., Splitt B.L., Wu G.S., Spalding E.P. (2007) Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell 19:1838-1850.
Lewis D.R., Negi S., Sukumar P., Muday G.K. (2011) Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 138:3485-3495.
Lin C., Ahmad M., Gordon D., Cashmore A.R. (1995) Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light. Proceedings of the National Academy of Sciences of the United States of America 92:8423-7.
Lombardo M.C., Graziano M., Polacco J.C., Lamattina L. (2006) Nitric oxide functions as a positive regulator of root hair development. Plant Signal Behavior 1:28-33.
Mancuso S., Sabala S. (2007) Rhythms in plants: phenomynology, mechanisms and adaptative significance. Springer 2007.
Mandoli D.F., Ford G.A., Waldron L.J., Nemson J.A., Briggs W.R. (1990) Some spectral properties of several soil types - implications for photomorphogenesis. Plant Cell and Environment 13:287-294.
Massa G.D., Gilroy S. (2003) Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana. Plant Journal 33:435-445.
Mata C.G., Lamattina L. (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology 126:1196-1204.
Mattsson J., Ckurshumova W., Berleth T. (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiology 131:1327-1339.
Michniewicz M., Brewer P.B., Friml J.I. (2007) Polar auxin transport and asymmetric auxin distribution. Arabidopsis Book 5:1-28.
Muday G.K., DeLong A. (2001) Polar auxin transport: controlling where and how much. Trends in Plant Science 6:535-542.
Mugnai S., Azzarello E., Masi E., Pandolfi C., Mancuso S. (2007) Nutation in plants. Rhythms in Plants,77-90.
Muller A., Hillebrand H., Weiler E.W. (1998) Indole-3-acetic acid is synthesized from l-tryptophan in roots of Arabidopsis thaliana. Planta 206:362-369.
Ohno Y., Fujiwara A. (1967) Photoinhibition of elongation growth of roots in rice seedlings. Plant and Cell Physiology 8:141-150.
Okada K., Shimura Y. (1990) Reversible root-tip rotation in Arabidopsis seedlings induced by obstacle-touching stimulus. Science 250:274-276.
Pagnussat G.C., Simontacchi M., Puntarulo S., Lamattina L. (2002) Nitric oxide is required for root organogenesis. Plant Physiology 129:954-956.
Palme K., Dovzhenko A., Ditengou F.A. (2006) Auxin transport and gravitational research: perspectives. Protoplasma 229:175-181.
Pedroso M.C., Durzan D.J. (2000) Effect of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves. Annals of Botany 86:983-994.
Petrasek J., Mravec J., Bouchard R., Blakeslee J.J., Abas M., Seifertova D., Wisniewska J., Tadele Z., Kubes M., Covanova M., Dhonukshe P., Skupa P., Benkova E., Perry L., Krecek P., Lee O.R., Fink G.R., Geisler M., Murphy A.S., Luschnig C., Zazimalova E., Friml J. (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914-918.
Rahman A., Hosokawa S., Oono Y., Amakawa T., Goto N., Tsurumi S. (2002) Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiology 130:1908-1917.
Rashotte A.M., Brady S.R., Reed R.C., Ante S.J., Muday G.K. (2000) Basipetal auxin transport is required for gravitropism in roots of arabidopsis. Plant Physiology 122:481-490.
Ren B.B., Zhang N.H., Yang J.J., Ding H.G. (2008) Nitric oxide-induced bacteriostasis and modification of iron-sulphur proteins in Escherichia coli. Molecular Microbiology 70:953-964.
Rogg L.E., Lasswell J., Bartel B. (2001) A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell 13:465-480.
Ruzicka K., Ljung K., Vanneste S., Podhorska R., Beeckman T., Friml J., Benkova E. (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197-2212
Sack F.D. (1997) Plastids and gravitropic sensing. Planta 203:S63-S68.
Salisbury F.J., Hall A., Grierson C.S., Halliday K.J. (2007) Phytochrome coordinates Arabidopsis shoot and root development. Plant Journal 50:429-38.
Shimizu H., Tanabata T., Xie X.Z., Inagaki N., Takano M., Shinomura T., Yamamoto K.T. (2009) Phytochrome-mediated growth inhibition of seminal roots in rice seedlings. Physiologia Plantarum 137:289-297.
Shinomura T., Nagatani A., Hanzawa H., Kubota M., Watanabe M., Furuya M. (1996) Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 93:8129-33.
Sibaoka T. (1962) Excitable Cells in Mimosa. Science 137 (3525):226.
Smalle J., Vander Straeten D. (1997) Ethylene and vegetative development. Physiologia Plantarum 100:593-605.
Sommer A.P., Franke R.P. (2006) Plants grow better if seeds see green. Naturwissenschaften 93:334-7.
Stolarz M., Krol E., Dziubinska H., Zawadzki T. (2008) Complex relationship between growth and circumnutations in Helianthus annuus stem. Plant Signal Behavior 3:376-80.
Sun Q., Yoda K., Suzuki H. (2005) Internal axial light conduction in the stems and roots of herbaceous plants. Journal of Experimental Botany 56:191-203.
Takahashi H. (1997) Hydrotropism: The current state of our knowledge. Journal of Plant Research 110:163-169.
Takano M., Inagaki N., Xie X.Z., Kiyota S., Baba-Kasai A., Tanabata T., Shinomura T. (2009) Phytochromes are the sole photoreceptors for perceiving red/far-red light in rice. Proceedings of the National Academy of Sciences of the United States of America 106:14705-14710.

Tanimoto M., Tremblay R., Colasanti J. (2008) Altered gravitropic response, amyloplast sedimentation and circumnutation in the Arabidopsis shoot gravitropism 5 mutant are associated with reduced starch levels. Plant Molecular Biology 67:57-69.
Tasaka M., Kato T., Fukaki H. (1999) The endodermis and shoot gravitropism. Trends in Plant Science 4:103-107.
Tsuchisaka A., Theologis A. (2004) Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proceedings of the National Academy of Sciences of the United States of America 101:2275-2280.
Tsuchisaka A., Theologis A. (2004) Unique and overlapping expression patterns among the arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiology 136:2982-3000.
Uga Y., Ebana K., Abe J., Morita S., Okuno K., Yano M. (2009) Variation in root morphology and anatomy among accessions of cultivated rice (Oryza sativa L.) with different genetic backgrounds. Breeding Science 59:87-93.
Vellosillo T., Martinez M., Lopez M.A., Vicente J., Cascon T., Dolan L., Hamberg M., Castresana C. (2007) Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell 19:831-846.
Vitha S., Yang M., Sack F.D., Kiss J.Z. (2007) Gravitropism in the starch excess mutant of Arabidopsis thaliana. American Journal of Botany 94:590-598.
Schuster J., Engelmann W. (1997) Circumnutations of Arabidopsis thaliana seedlings. Biological Rhythm Research; 28:422-44.
Wang J.R., Hu H., Wang G.H., Li J., Chen J.Y., Wu P. (2009) Expression of PIN genes in rice (Oryza sativa L.): tissue specificity and regulation by hormones. Molecular Plant 2:823-831.
Wang S.J., Ho C.H., Chen H.W. (2011) Rice develop wavy seminal roots in response to light stimulus. Plant Cell Reports 30:1747-1758.
Whitelam G. (1995) Plant photomorphogenesis: a green light for cryptochrome research. Current Biology 5:1351-3.
Xiong J., Lu H., Lu K.X., Duan Y.X., An L.Y., Zhu C. (2009) Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings. Planta 230:599-610.
Xu M., Zhu L., Shou H.X., Wu P. (2005) A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant and Cell Physiology 46:1674-1681.
Yoshihara T., Iino M. (2005) Circumnutation of rice coleoptiles: its occurrence, regulation by phytochrome, and relationship with gravitropism. Plant Cell and Environment 28:134-46.
Yoshihara T., Iino M. (2006) Circumnutation of rice coleoptiles: its relationships with gravitropism and absence in lazy mutants. Plant Cell and Environment 29:778-792.
Zhao Y. (2010) Auxin biosynthesis and its role in plant development. Annual Review plant Biology 61:49-64.
Zhang T., Maruhnich S.A., Folta K.M. (2011) Green light induces shade avoidance symptoms. Plant Physiology 157:1528-36.
Zhuang X.L., Jiang J.F., Li J.H., Ma Q.B., Xu Y.Y., Xue Y.B., Xu Z.H., Chong K. (2006) Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development. Plant Journal 48:581-591.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63670-
dc.description.abstract光照為調控根部型態的環境因子之一,本實驗室先前的研究指出光照刺激會誘導水稻臺中在來一號 (Taichung Native 1; TCN1)產生波動狀種子根,而此現象在臺農67號 (Tainung 67; TNG67)則不會發生。另一方面亦指出植物荷爾蒙生長素與oxylipins參與在TCN1波動狀根的發生過程。本論文的研究結果發現在光照刺激下TCN1之生長速度與迴旋運動 (circumnutation)速率較黑暗環境顯著下降,且根尖旋轉一周的角度也大於黑暗環境。向地性試驗顯示TCN1波動狀種子根之重力感應能力較差。進一步探討光誘導TCN1種子根波動型態發生的生理過程,發現生長素、一氧化氮與oxylipins都參與在此路徑中,並發現光照刺激下首先誘導TCN1種子根一氧化氮含量上升,在光照處理下外加一氧化氮清除劑2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO)將會抑制oxylipins及生長素生合成之相關基因表現,顯示一氧化氮訊息位於oxylipins及生長素之上游,再藉由oxylipins生合成抑制劑n-propylgallate (n-PG)處理發現會降低根尖生長素含量,推測oxylipins為生長素之上游調控因子。另亦發現乙烯亦參與光誘導波動狀種子根形成之生理過程。光質試驗指出不同強度的紅、藍、綠光可誘導TCN1根部產生捲曲、盤繞或波動等型態。另一方面探討光照刺激下TCN1和TNG67之光接受蛋白的基因表現,發現OsPhyA、OsPhyB與OsCry1可能與TCN1於光照下產生波動狀根有密切關聯。綜合以上結果,推測TCN1種子根於照光刺激下使特定光接受蛋白之基因表現上升,進而改變種子根內之生理代謝機制,接著改變其運動模式,最後造成波動狀型態發生。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-16T17:16:04Z (GMT). No. of bitstreams: 1
ntu-101-R99621111-1.pdf: 10028073 bytes, checksum: a39c10baee56863f19ea8a498d03ea02 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
誌謝……………………………………………………………………………..... I
中文摘要…………………………………………………………………………. II
Abstract…………………………………………………………………………... III
目錄……………………………………………………………………………….. IV
縮寫字對照……………………………………………………………………….. VIII
前人研究………………………………………………………………………….. 1
1. 光照刺激對根型態之影響…………………………………………………. 1
1.1 光對植物根系的影響………………………………………………….. 1
1.2 植物光接收蛋白 (photoreceptor)…………………………………….... 2
2. 植物迴旋運動………………………………………………………………. 3
2.1 植物之運動形式……………………………………………………….. 3
2.2 植物迴旋運動產生之假說…………………………………………….. 3
2.3 環境因子對迴旋運動之影響………………………………………….. 4
2.3.1 阻礙物對迴旋運之影響…………………………………………... 4
2.3.2 光對迴旋運動之影響……………………………………………... 4
3. 植物根部感應重力之機制…………………………………………………. 5
4. 植物荷爾蒙與化學物質對根系生長之影響……………………………… 5
4.1 生長素………………………………………………………………….. 5
4.2 一氧化氮……………………………………………………………….. 6
4.3 oxylipins………………………………………………………………… 7
4.4 乙烯…………..………………………………………………………… 7
5. 本實驗室先前有關水稻幼苗種子根光型態發生之相關研究…………… 8
本論文之研究主題……………………………………………………………….. 10
材料與方法……………………………………………………………………….. 11
1. 植物材料……………………………………………………………………. 11
2. 光照對水稻種子根部型態與行為影響之分析…………………………… 11
2.1 種子催芽……………………………………………………………….. 11
2.2 根部運動行為觀測…………………………………………………….. 11
2.2.1 拍攝……………………………………………………………….. 11
2.2.2 根尖擺動角度量測………………………………………………... 12
2.3 向地性試驗………………………………………………………….. 12
3. 荷爾蒙與化學藥劑處理…………………………………………………… 12
3.1 一氧化氮……………………………………………………………….. 12
3.2 生長素………………………………………………………………….. 13
3.3 乙烯…………………………………………………………………….. 13
3.4 混合藥劑處理………………………………………………………….. 13
3.4.1 生長素與一氧化氮………………………………………………... 13
3.4.2 生長素與oxylipins………………………………………………… 13
3.4.3 一氧化氮與oxylipins……………………………………………… 13
4. 一氧化氮螢光影像偵測……………………………………………………. 14
5. 不同光質與光強處理………………………………………………………. 14
6. 基因分析表現………………………………………………………………. 14
6.1 總RNA萃取……………………………………………………………. 14
6.2 TURBO DNase處理…………………………………………………... 15
6.3 RNA電泳………………………………………………………….….. 15
6.4 即時反轉錄聚合酶連鎖反應 (Real-time RT-PCR) ………..………... 16
6.5 Real-time RT-PCR引子列表…………………………………………. 17
結果………………………………………………………………………………. 18
1. 分析不同水稻品種於光照及黑暗環境中其根部之迴旋運動型態………. 18
2. 分析不同水稻品種於光照刺激下根部向地性特性之改變………………. 19
3. 生長素參與光誘導TCN1種子根波動型態發生…………………………. 19
4. 一氧化氮參與光誘導TCN1種子根波動型態發生………………………. 20
5. 一氧化氮、生長素與oxylipins調控波動狀種子根發生之交互作用…… 21
5.1 一氧化氮與生長素調控波動狀種子根發生之交互作用…………….. 21
5.2 一氧化氮與oxylipins調控波動狀種子根發生之交互作用………….. 22
5.3 生長素與oxylipins調控波動狀種子根發生之交互作用…………….. 23
6. 乙烯 (ethylene)亦參與光誘導TCN1種子根波動型態發生……………. 24
7. 光質與光強度對水稻種子根型態的影響………………………………… 24
7.1 光質與光強對TCN1水稻種子根型態之影響……………………..… 24
7.2 光質與光強對TNG67水稻種子根型態之影響……………………… 25
8. 光照刺激對水稻種子根部光接受蛋白之影響…………………………… 25
討論……………………………………………………………………………… 27
1.植物不同迴旋運動型式與根部外觀型態………………………………..… 27
2. TCN1波動狀種子根發生之生理調控路徑……………………………….. 28
2.1 生長素含量與生長素極向運移……………………………………..… 28
2.2 一氧化氮與生長素之交互作用……………………………………..… 29
2.3 生長素、一氧化氮與oxylipins共同調控TCN1波動狀根發生……. 30
2.4 乙烯亦參與光照誘導TCN1波動狀種子根發生過程……………..… 30
3. 不同光質與光強度對水稻種子根型態之影響………………………….… 31
4. 結語與未來展望…………………………………………………………… 32
圖表與附錄………………………………………………………………………. 33
圖一、TCN1水稻種子根於光照及黑暗環境中之根尖迴旋運動型態……… 33
圖二、TNG67水稻種子根於光照及黑暗環境中之根尖迴旋運動型態…….. 34
圖三、TCN1與TNG67種子根於光照及黑暗環境根尖迴旋運動擺動角度 35
圖四、光照刺激下TCN1與TNG67種子根向地性之特性………………… 36
圖五、生長素參與光誘導TCN1種子根波動型態發生………………………. 37
圖六、光照刺激對水稻幼苗種子根內生長素極向運移蛋白基因表現之影響 38
圖七、一氧化氮對光照刺激誘導TCN1波動狀根型態之影響…………….… 39
圖八、以一氧化氮螢光探針偵測TCN1水稻幼苗根部之一氧化氮含量……. 40
圖九、一氧化氮與生長素交互作用對TCN1波動根形成之影響 (1)…….…. 41
圖十、一氧化氮與生長素交互作用對TCN1波動根形成之影響(2)…….… 42
圖十一、一氧化氮與oxylipins交互作用對TCN1波動根形成之影響(1)........ 43
圖十二、一氧化氮與oxylipins交互作用對TCN1波動根形成之影響(2)…… 44
圖十三、生長素與oxylipins交互作用對TCN1波動根形成之影響(1)……… 45
圖十四、生長素與oxylipins交互作用對TCN1波動根形成之影響(2)……… 46
圖十五、乙烯對光照刺激誘導TCN1波動狀根型態之影響…………………. 47
圖十六、光照刺激誘導TCN1波動狀種子根發生之生理調控途徑……….… 48
圖十七、光質對水稻TCN1種子根之影響……………………………….…… 49
圖十八、光質對水稻TNG67種子根之影響………………………………… 50
圖十九、光照刺激對水稻種子根phytochrome基因表現之影響………….… 51
圖二十、光照刺激對水稻種子根phototropin基因表現之影響……………. 52
圖二十一、光照刺激對水稻種子根cryptochrome基因表現之影響………… 53
附圖一、本論文量測根尖擺盪角度之方法……………………………….…. 54
附圖二、迴旋運動之參數分析示意圖…………………………………..……. 55
附圖三、人工照明室之白光光譜…………………………………………..… 56
附圖四、TCN1與TNG67在光照和黑暗環境中其種子根型態………….. 57
參考文獻………………………………………………………………………….. 58
dc.language.isozh-TW
dc.subject乙烯zh_TW
dc.subject光zh_TW
dc.subject生長素zh_TW
dc.subject水稻zh_TW
dc.subject波動狀根zh_TW
dc.subject一氧化氮zh_TW
dc.subjectoxylipinszh_TW
dc.subjectlighten
dc.subjectethyleneen
dc.subjectoxylipinsen
dc.subjectauxinen
dc.subjectnitric oxideen
dc.subjectwavy rooten
dc.subjectrice (Oryza sativa L.)en
dc.title生長素、一氧化氮與oxylipins共同參與調控光照誘導水稻種子波動狀根發生zh_TW
dc.titleCoordination of Auxin, Nitric Oxide and Oxylipins in Regulation of Light-Induced Rice Seminal Root Wavingen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪傳揚(Chwan-Yang Hong),陳仁治(Jen-Chin Chen),張孟基(Men-Chi Chang),黃文理(Wen-Lii Huang)
dc.subject.keyword光,水稻,波動狀根,一氧化氮,生長素,oxylipins,乙烯,zh_TW
dc.subject.keywordlight,rice (Oryza sativa L.),wavy root,nitric oxide,auxin,oxylipins,ethylene,en
dc.relation.page64
dc.rights.note有償授權
dc.date.accepted2012-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
9.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved