請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63669完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃良雄 | |
| dc.contributor.author | Hsiu-Ching Hsu | en |
| dc.contributor.author | 許琇晴 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:16:02Z | - |
| dc.date.available | 2013-08-22 | |
| dc.date.copyright | 2012-08-22 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-17 | |
| dc.identifier.citation | 1. Blake J. R., “A Note on the Image System for a Stokeslet in a No-Slip Boundary”, Proc.Camb. Phil. Soc., 70, pp.303-310, 1971.
2. Blake J. R. and Chwang A. T., “Fundamental singularities of viscous flow. Part I: The image systems in the vicinity of a stationary no-slip boundary”, Journal of Engineering Math., 8, pp.23-29, 1974. 3. Biot M. A., “General Theory of Three-Dimensional Consolidation”, Journal of Applied Physics, 12, pp.155-164, 1941. 4. Biot M. A., “Theory of Elasticity and Consolidation for a Porous Anisotropic Solid”, Journal of Applied Physics, 26, pp.182-185, 1955. 5. Booker J. R., and Carter J. P., “Analysis of a Point Sink Embedded in a Porous Elastic Half Space.”, Journal for Numerical and Analytical Methods in Geomechanics, 10, pp.137-150, 1986. 6. Chwang A. T., and Wu T. Y.-T., “Hydrodynamics of Low-Rynolds Number Flow.Part2, Singularity Methods for Stokes Flow”, Journal of Fluid Mechancis, 67, pp.787-815, 1975. 7. Grashteyn I. S., and Ryzhik I. M., “Table of Integral, Series, and Product”, Seven edition, 2007. 8. Happle J., and Brenner H., “Low Reynolds Number Hydrodynamics”, chapte3, pp.71-78, 1983. 9. Jacob C. E., “The Flow of Water in the Elastic Artesian Aquifer”, Eos Trans, AGU, 21, pp.574-586, 1940. 10. Jacob C. E., “Flow of Ground-Water in Engineering Hydraulics”, New York, pp.321-386, 1950. 11. Lamb H., “Hydrodynamics”, 6th ed., Cambridge University.Press, 1945. 12. Lambe T. W, and Whitman R. V., “Soil Mechanics”, SI version, New Work, 1969. 13. Mei C. C., and Foda M. A., “Wave-Induced Responses in a Fluid Filled Poroelastic Solid with a Free Surface - a Boundary Layer Theory”Geophys, J. R. Astr. Soc.66, pp.597-631, 1981. 14. Ng C. O., and Mei C. C., “Ground Subsidence of Finite Amplitude Due to Pumping and Surface Loading”, Water Resources Research, Vol. 31 No. 8, pp.1953-1968, 1995. 15. Power H., and Guillermo M., “Second Kind Integral Equation Formulation of Stokes's Flow Past a Particle of Arbitrary Shape”, Journal of Applied Mathematics, 47, pp.689-698, 1987. 16. Pozrikidis, C., “Boundary Integral and Singularity Methods for Linearized Viscous Flow”, Cambridge University Press, 1992. 17. Terzaghi K., “Erdbaumechnic Auf Bodenphysikalisher Grundlage”, Franz Deuticke, Vienna, 1925. 18. Terzaghi K., “Theoretical Soil Mechanics”, New York, pp.270, 1943. 19. Youngren G. K., and Acrivos A., “Stokes Flow Past a Paitichk of Arbitrary Shape: A Numerical Method of Solution“, Journal of Fluid Mechanics, 69, pp.377-403, 1975. 20. 宋長虹,”水波作用下多孔彈性底床動力反應之研究”,國立台灣大學土木工程學研究所博士論文,台北,1993。 21. 林瑞琦,” 一維耦合地層下陷模式之建立”,國立台灣大學土木工程學研究所碩士論文,台北,2001。 22. 蔡東霖,”區域性地下水超抽導致地層下陷模式之發展與應用”,國立交通大學博士論文,新竹,2001。 23. 曾鈞敏,”地下水超抽引致地層下陷之三維解析解研究”,國立臺灣大學工學院土木工程學系博士論文,台北,2009。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63669 | - |
| dc.description.abstract | 目前有關於地層下陷之分析方法,多著重於數值計算模式,對於應用數學解析模式則較少討論,尤以荷重引致地層下陷之研究更是不多。因此,依據曾鈞敏(2009)推導出含孔隙水壓力與土體位移之三維非耦合方程式,並發現其型式與史托克斯流(Stokes’ flow)相似之研究成果,本研究擬建立抽水與荷重引致地層下陷控制方程式,並就控制方程式之特性尋找適當之解析解,最後以案例分析說明。
本研究因抽水與荷重引致地層下陷控制方程式之型式與史托克斯流(Stokes’ flow)相似,故似可以邊界積分法求解,但由於壓力與位移的量階(order)相差太多,易造成數值運算的不穩定,故無法使用邊界積分法求解地層下陷之問題。 對於求解抽水問題時,點抽水源可視為點涵(point sink)作用,故壓力為源流奇異點,可採用奇異解法(singularity method)之映射方法(image method)求解;然而,位移項並無奇異點可與壓力對應,故無法以映射法求解位移;因此,本研究結合映射法與參考Happel and Brenner(1983)中提及利用分離變數法(separation of variables)求解三維史托克斯流於圓柱座標下之解析解方法,即複合法,成功求解出抽水行為下之壓力場與位移場。 對於求解荷重問題時,假設荷重強度為點力(point force)作用,故位移項可視為Stokeslet奇異點;對應壓力則為Dipole型式,因此可使用奇異解法之映射法搭配適當邊界條件,求出壓力場與位移場;此外,關於Stokeslet於剛性邊界之映射解,可引用Blake(1971)以Stokeslet映射無滑動剛性邊界之結果。 最後分別以非拘限有限深含水層與拘限有限深含水層兩個案例說明,由計算結果可知當抽水與荷重引致地層下陷時,其壓力與位移以及垂直位移量與水平位移量的量階差,以作為後續研究以數值方法計算之參考。 | zh_TW |
| dc.description.abstract | On landsubsidence analysis, application of numerical model is more than analystical model, and the study of landsubsidence due to loding is less disscussion. Therefore, according to the complete uncoupled equation using only pore pressure and soil displacement of Tseng’s(2009), we construct the landsubsidence governing equation due to groundwater overpumping and loding, then find the appropriate analytical solution and illustrate the result with cases.
Because the three-dimensional uncoupled equation is very similar to Stokes’ flow, it seems that we can use boundary integral element method to slove equation. However, the order of pore water pressure is more than soil displacement, hence that will cause computational instability. In the landsubsidence due to overpumping problem, water being pumped underground is a point sink, and the pressure singularity is mass source, hence it can sloved by the image method of singularity method. But the displacement can not use image method. Consequently, we combine image method with separation of variables method which sloved three-dimensional Stokes’ flow in cylindrical coordinates by Happel and Brenner(1983) to successfully solve the governing equation, and it’s called multiple method. In the landsubsidence due to loading problem, the load strength is a point force, hence the displacement singularity is a stokeslet and pressure singularity is a dipole, so it is sloved by the image method of singularity method. Besides, in this study we can apply the result of image system for a stokeslet in a no-slip boundary of Blake(1971). We illustrate result with the two cases of finite depth unconfined aquifer and finite depth confined aquifer. From thres result, in the landsubsidence due to groundwater overpumping and loading problem, we understand the amount of order of pressure and displacement and vertical displacement and horizontal displacement. Therefore, it is a useful reference for numerical model. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:16:02Z (GMT). No. of bitstreams: 1 ntu-101-R99521304-1.pdf: 6941740 bytes, checksum: a57e776cc7529d6a9c88f784f1ab9a70 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌 謝 I
中文摘要 II ABSTRACT III 目 錄 V 圖目錄 VIII 表目錄 XIII 符號說明 XIV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 研究方法與步驟 4 1.4 章節介紹 5 第二章 三維非耦合地層下陷理論 6 2.1 三維非耦合地層下陷控制方程式推導 6 2.2 與史托克斯流(Stokes’ flow)型式相似性探討 8 2.3 多孔彈性介質之邊界條件 9 第三章 三維非耦合抽水與荷重引致地層下陷之問題 12 3.1 建立三維非耦合抽水與荷重引致地層下陷之控制方程式 12 3.1.1 點涵(point sink)抽水引致地層下陷之控制方程式推導 12 3.1.2 點力(point force)荷重引致地層下陷之控制方程式推導 13 3.2 探討無法使用邊界積分法求解地層下陷問題之原因 14 3.3 採用複合法求解抽水問題 15 3.4 利用奇異解方法(singularity method)求解荷重問題 16 第四章 計算抽水引致地層下陷之問題與案例解析 18 4.1 應用複合法求解抽水問題 18 4.1.1 非拘限有限深含水層 18 4.1.2 拘限有限深含水層 25 4.2 非拘限有限深含水層瞬時點抽水源案例 28 4.2.1 壓力與位移量之計算結果 29 4.2.2 累積沉陷量與傾斜率 30 4.2.3 檢定邊界條件是否相符 31 4.3 拘限有限深含水層瞬時點抽水源案例 32 4.3.1 壓力與位移量之計算結果 33 4.3.2 累積沉陷量與斜率 34 4.3.3 檢定邊界條件是否相符 35 4.4 分析結果探討 36 第五章 計算荷重引致地層下陷問題與案例解析 67 5.1 與Terzaghi之單向度壓密方程式比較 67 5.2 應用映射法(image method)求解荷重問題 69 5.2.1 上邊界為非拘限含水層 69 5.2.2 上邊界為拘限含水層 69 5.2.3 含水層底部為岩盤 70 5.3 非拘限有限深含水層瞬時點力案例 71 5.3.1 壓力與位移量之計算結果 72 5.3.2 累積沉陷量與斜率 73 5.3.3 修正拉梅(Lame)彈性常數G之位移量計算結果 73 5.3.4 檢定邊界條件是否符合 74 5.4 拘限有限深含水層瞬時點力案例 74 5.4.1 壓力與位移量之計算結果 76 5.4.2 累積沉陷量與斜率 76 5.4.3 修正拉梅(Lame)彈性常數G之位移量計算結果 77 5.4.4 檢定邊界條件是否符合 77 第六章 結論與建議 96 6.1 結論 96 6.2 建議 97 參考文獻 98 附錄A 三維非耦合地層下陷控制方程式推導 101 附錄B 圓柱座標下之三維史托克斯流(Stokes’ flow)解析解 111 附錄C 對靜止剛性邊界之映射式推導 118 | |
| dc.language.iso | zh-TW | |
| dc.subject | 奇異解法 | zh_TW |
| dc.subject | 解析解 | zh_TW |
| dc.subject | 荷重 | zh_TW |
| dc.subject | 映射法 | zh_TW |
| dc.subject | 抽水 | zh_TW |
| dc.subject | 三維地層下陷 | zh_TW |
| dc.subject | image method | en |
| dc.subject | analytical method | en |
| dc.subject | pumping | en |
| dc.subject | loading | en |
| dc.subject | singularity method | en |
| dc.subject | three-dimensional landsubsidence | en |
| dc.title | 三維地層下陷之解析解研究 | zh_TW |
| dc.title | Three Dimensional Analytical Study of Landsubsidence | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝平城,曾鈞敏 | |
| dc.subject.keyword | 三維地層下陷,解析解,抽水,荷重,奇異解法,映射法, | zh_TW |
| dc.subject.keyword | three-dimensional landsubsidence,analytical method,pumping,loading,singularity method,image method, | en |
| dc.relation.page | 120 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 6.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
