Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63659
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor阮雪芬(Hsueh-Fen Juan)
dc.contributor.authorHui-Ting Tsaien
dc.contributor.author蔡惠婷zh_TW
dc.date.accessioned2021-06-16T17:15:50Z-
dc.date.available2017-08-27
dc.date.copyright2012-08-27
dc.date.issued2012
dc.date.submitted2012-08-19
dc.identifier.citation1. Pullman, M. E.; Penefsky, H. S.; Datta, A.; Racker, E., Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. J Biol Chem 1960, 235, 3322-9.
2. Boyer, P. D., The ATP synthase--a splendid molecular machine. Annu Rev Biochem 1997, 66, 717-49.
3. Hudson, G. S.; Mason, J. G.; Holton, T. A.; Koller, B.; Cox, G. B.; Whitfeld, P. R.; Bottomley, W., A gene cluster in the spinach and pea chloroplast genomes encoding one CF1 and three CF0 subunits of the H+-ATP synthase complex and the ribosomal protein S2. J Mol Biol 1987, 196, (2), 283-98.
4. Kanazawa, H.; Kayano, T.; Mabuchi, K.; Futai, M., Nucleotide sequence of the genes coding for alpha, beta and gamma subunits of the proton-translocating ATPase of Escherichia coli. Biochem Biophys Res Commun 1981, 103, (2), 604-12.
5. Walker, J. E.; Fearnley, I. M.; Gay, N. J.; Gibson, B. W.; Northrop, F. D.; Powell, S. J.; Runswick, M. J.; Saraste, M.; Tybulewicz, V. L., Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria. J Mol Biol 1985, 184, (4), 677-701.
6. Griffiths, D. E.; Houghton, R. L., Studies on energy-linked reactions: modified mitochondrial ATPase of oligomycin-resistant mutants of Saccharomyces cerevisiae. Eur J Biochem 1974, 46, (1), 157-67.
7. Haslam, J. M.; Proudlock, J. W.; Linnane, A. W., Biogenesis of mitochondria. 20. The effects of altered membrane lipid composition on mitochondrial oxidative phosphorylation in Saccharomyces cerevisiae. J Bioenerg 1971, 2, (5), 351-70.
8. Mitchell, P., Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 1961, 191, 144-8.
9. Yagi, H.; Tozawa, K.; Sekino, N.; Iwabuchi, T.; Yoshida, M.; Akutsu, H., Functional conformation changes in the TF(1)-ATPase beta subunit probed by 12 tyrosine residues. Biophys J 1999, 77, (4), 2175-83.
10. Kayalar, C.; Rosing, J.; Boyer, P. D., An alternating site sequence for oxidative phosphorylation suggested by measurement of substrate binding patterns and exchange reaction inhibitions. J Biol Chem 1977, 252, (8), 2486-91.
11. Yasuda, R.; Noji, H.; Kinosita, K., Jr.; Yoshida, M., F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree steps. Cell 1998, 93, (7), 1117-24.
12. Gresser, M. J.; Myers, J. A.; Boyer, P. D., Catalytic site cooperativity of beef heart mitochondrial F1 adenosine triphosphatase. Correlations of initial velocity, bound intermediate, and oxygen exchange measurements with an alternating three-site model. J Biol Chem 1982, 257, (20), 12030-8.
13. Das, B.; Mondragon, M. O.; Sadeghian, M.; Hatcher, V. B.; Norin, A. J., A novel ligand in lymphocyte-mediated cytotoxicity: expression of the beta subunit of H+ transporting ATP synthase on the surface of tumor cell lines. J Exp Med 1994, 180, (1), 273-81.
14. Arakaki, N.; Nagao, T.; Niki, R.; Toyofuku, A.; Tanaka, H.; Kuramoto, Y.; Emoto, Y.; Shibata, H.; Magota, K.; Higuti, T., Possible role of cell surface H+ -ATP synthase in the extracellular ATP synthesis and proliferation of human umbilical vein endothelial cells. Mol Cancer Res 2003, 1, (13), 931-9.
15. Moser, T. L.; Stack, M. S.; Asplin, I.; Enghild, J. J.; Hojrup, P.; Everitt, L.; Hubchak, S.; Schnaper, H. W.; Pizzo, S. V., Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci U S A 1999, 96, (6), 2811-6.
16. Martinez, L. O.; Jacquet, S.; Esteve, J. P.; Rolland, C.; Cabezon, E.; Champagne, E.; Pineau, T.; Georgeaud, V.; Walker, J. E.; Terce, F.; Collet, X.; Perret, B.; Barbaras, R., Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 2003, 421, (6918), 75-9.
17. Kim, B. W.; Choo, H. J.; Lee, J. W.; Kim, J. H.; Ko, Y. G., Extracellular ATP is generated by ATP synthase complex in adipocyte lipid rafts. Exp Mol Med 2004, 36, (5), 476-85.
18. Mangiullo, R.; Gnoni, A.; Leone, A.; Gnoni, G. V.; Papa, S.; Zanotti, F., Structural and functional characterization of F(o)F(1)-ATP synthase on the extracellular surface of rat hepatocytes. Biochim Biophys Acta 2008, 1777, (10), 1326-35.
19. Bae, T. J.; Kim, M. S.; Kim, J. W.; Kim, B. W.; Choo, H. J.; Lee, J. W.; Kim, K. B.; Lee, C. S.; Kim, J. H.; Chang, S. Y.; Kang, C. Y.; Lee, S. W.; Ko, Y. G., Lipid raft proteome reveals ATP synthase complex in the cell surface. Proteomics 2004, 4, (11), 3536-48.
20. Chatenay-Rivauday, C.; Cakar, Z. P.; Jeno, P.; Kuzmenko, E. S.; Fiedler, K., Caveolae: biochemical analysis. Mol Biol Rep 2004, 31, (2), 67-84.
21. Wang, T.; Chen, Z.; Wang, X.; Shyy, J. Y.; Zhu, Y., Cholesterol loading increases the translocation of ATP synthase beta chain into membrane caveolae in vascular endothelial cells. Biochim Biophys Acta 2006, 1761, (10), 1182-90.
22. Kim, K. B.; Lee, J. W.; Lee, C. S.; Kim, B. W.; Choo, H. J.; Jung, S. Y.; Chi, S. G.; Yoon, Y. S.; Yoon, G.; Ko, Y. G., Oxidation-reduction respiratory chains and ATP synthase complex are localized in detergent-resistant lipid rafts. Proteomics 2006, 6, (8), 2444-53.
23. Yonally, S. K.; Capaldi, R. A., The F(1)F(0) ATP synthase and mitochondrial respiratory chain complexes are present on the plasma membrane of an osteosarcoma cell line: An immunocytochemical study. Mitochondrion 2006, 6, (6), 305-14.
24. Ideker, T.; Galitski, T.; Hood, L., A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2001, 2, 343-72.
25. Seong, S. Y.; Choi, C. Y., Current status of protein chip development in terms of fabrication and application. Proteomics 2003, 3, (11), 2176-89.
26. Chen, C. S.; Zhu, H., Protein microarrays. Biotechniques 2006, 40, (4), 423, 425, 427 passim.
27. Zhu, H.; Bilgin, M.; Bangham, R.; Hall, D.; Casamayor, A.; Bertone, P.; Lan, N.; Jansen, R.; Bidlingmaier, S.; Houfek, T.; Mitchell, T.; Miller, P.; Dean, R. A.; Gerstein, M.; Snyder, M., Global analysis of protein activities using proteome chips. Science 2001, 293, (5537), 2101-5.
28. Yang, L.; Guo, S.; Li, Y.; Zhou, S.; Tao, S., Protein microarrays for systems biology. Acta Biochim Biophys Sin (Shanghai) 2011, 43, (3), 161-71.
29. Hu, S.; Xie, Z.; Onishi, A.; Yu, X.; Jiang, L.; Lin, J.; Rho, H. S.; Woodard, C.; Wang, H.; Jeong, J. S.; Long, S.; He, X.; Wade, H.; Blackshaw, S.; Qian, J.; Zhu, H., Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell 2009, 139, (3), 610-22.
30. Sahdev, S.; Khattar, S. K.; Saini, K. S., Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 2008, 307, (1-2), 249-64.
31. Cho, S.; Park, S. G.; Lee, D. H.; Park, B. C., Protein-protein interaction networks: from interactions to networks. J Biochem Mol Biol 2004, 37, (1), 45-52.
32. Kanekatsu, M.; Saito, H.; Motohashi, K.; Hisabori, T., The beta subunit of chloroplast ATP synthase (CF0CF1-ATPase) is phosphorylated by casein kinase II. Biochem Mol Biol Int 1998, 46, (1), 99-105.
33. Reiland, S.; Messerli, G.; Baerenfaller, K.; Gerrits, B.; Endler, A.; Grossmann, J.; Gruissem, W.; Baginsky, S., Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 2009, 150, (2), 889-903.
34. Ko, Y. H.; Pan, W.; Inoue, C.; Pedersen, P. L., Signal transduction to mitochondrial ATP synthase: evidence that PDGF-dependent phosphorylation of the delta-subunit occurs in several cell lines, involves tyrosine, and is modulated by lysophosphatidic acid. Mitochondrion 2002, 1, (4), 339-48.
35. Creutz, C. E.; Edwardson, J. M., Organization and synergistic binding of copine I and annexin A1 on supported lipid bilayers observed by atomic force microscopy. Biochim Biophys Acta 2009, 1788, (9), 1950-61.
36. Cho, Y. R.; Zhang, A., Predicting protein function by frequent functional association pattern mining in protein interaction networks. IEEE Trans Inf Technol Biomed 2010, 14, (1), 30-6.
37. Cross, R. L., Molecular motors: turning the ATP motor. Nature 2004, 427, (6973), 407-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63659-
dc.description.abstractATP synthase is essential for almost all organisms because ATP is the common “energy currency” of cells. It is a multimeric protein complex including beta subunit (ATP5B) that catalyzes the synthesis of ATP from ADP and phosphate. Although ATP synthase was initially thought to be located exclusively in the mitochondrial inner membrane, its presence has now been described on the outside of the plasma membrane of both normal cells (e.g. endothelial cells, hepatocytes and adipocytes) and tumor cells. We are interested to understand whether ATP5B interacts with different proteins and performs different functions. Here, we perform a human proteome microarray to reveal the novel interacting proteins with ATP5B and identified 16 proteins which interact strongly with ATP5B. The identified ATP5B interacting proteins are functionally enriched in mitogen activated protein kinase 12 (MAPK12) dependent pathways. Our previous results showed that ATP5B was overexpressed on the plasma membrane with the potential as a cell proliferation regulator in both breast and lung cancers. Hence we further combined ATP synthase inhibitor, citrovirodin, and MAPK12 inhibitor, and found this combination leads to addictive inhibition on lung cancer cell proliferation. Taken together, these findings suggest that these interacting proteins of ATP5B as a cell proliferation signal linking to MAPK12 in response to a variety of extracellular stimuli.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:15:50Z (GMT). No. of bitstreams: 1
ntu-101-R99b43005-1.pdf: 3722277 bytes, checksum: eb04797dab0cbd549113023352b502a5 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
Abstract iv
Contents vi
List of Figures x
List of Tables xi
Chapter 1 Introduction 1
1.1 ATP synthase 1
1.2 ATP synthase β-subunit 2
1.3 Ectopic ATP synthase 3
1.4 Human proteome microarray 5
1.5 Motivation 7
1.6 Experimental design 8
Chapter 2 Materials and Methods 9
2.1 Cloning of ATP5B open reading frame 9
2.1.1 Cell culture 10
2.1.2 Total RNA extraction 10
2.1.3 Measurement of DNA concentration 11
2.2 Construction of pET-22b (+)-ATP5B, pET-43.1a (+)-ATP5B, pGEX-4T-1-ATP5B, and pMAL-c2X-ATP5B 11
2.2.1 Bacterial strains and bacterial culture 12
2.2.2 Transformation 12
2.2.3 Mini plasmid purification 13
2.3 Overexpression of ATP5B 13
2.3.1 Low temperature induction 14
2.3.2 Coomassie Brilliant Blue stained SDS-PAGE 14
2.3.3 Western blot 15
2.4 Purification of ATP5B 15
2.4.1 His-tagged protein purification 16
2.4.2 MBP-tagged protein purification 17
2.4.3 Bradford protein assay 17
2.4.4 Mass spectrometry 18
2.5 Hybridization of ATP5B with human proteome microarray 19
2.6 MataCore–pathway enrichment analysis 19
2.7 IPA–protein-protein interaction network analysis 20
2.8 RTCA system–cell growth assay 20
Chapter 3 Results 22
3.1 ATP5B construction and expression 22
3.2 Strategy I – control of the E. coli cellular milieu 23
3.3 Strategy II – engineered fusion protein 24
3.4 Strategy III –inclusion bodies re-solubilization and refolding 25
3.5 Hybridization of ATP5B with human proteome microarray 26
3.6 ATP5B interacting proteins are functionally enriched in MAPK12 dependent pathway 27
3.7 Top one protein-protein interaction network of ATP5B interacting proteins is highly connected 28
3.8 Combining citreoviridin and PD169316 leads to addictive inhibition on A549 proliferation 29
Chapter 4 Discussion 31
Chapter 5 Conclusion 36
Chapter 6 Future Works 37
References 38
Figures 45
Tables 58
Appendix A 62
Appendix B 63
Appendix C 64
Appendix D 68
Appendix E 69
dc.language.isoen
dc.subject交互作用蛋白zh_TW
dc.subject人類蛋白質體晶片zh_TW
dc.subject三磷酸腺&#33527zh_TW
dc.subject合成&#37238zh_TW
dc.subject有絲分裂原活化蛋白質激&#37238zh_TW
dc.subjectβ 次單位zh_TW
dc.subjectMAPK12en
dc.subjectATP synthaseen
dc.subjectATP5Ben
dc.subjectinteracting proteinsen
dc.subjecthuman proteome microarrayen
dc.title利用人類蛋白質體晶片探討ATP合成酶之交互作用蛋白zh_TW
dc.titleRevealing Novel Interacting Proteins of ATP Synthase by Human Proteome Microarrayen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃宣誠(Hsuan-Cheng Huang),陳健生(Chien-Sheng Chen),徐駿森(Chun-Hua Hsu),王憶卿(Yi-Ching Wang)
dc.subject.keyword三磷酸腺&#33527,合成&#37238,β 次單位,交互作用蛋白,人類蛋白質體晶片,有絲分裂原活化蛋白質激&#37238,12,zh_TW
dc.subject.keywordATP synthase,ATP5B,interacting proteins,human proteome microarray,MAPK12,en
dc.relation.page69
dc.rights.note有償授權
dc.date.accepted2012-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved